
Array ADT
So far we have looked at Integer, String, Stack, and List

ADTs.

ADT Array:

Elements: A component data type is defined and all

elements are of that type (homogeneous).

Structure: A linear index type is specified and a 1-1

correspondence exists between the index type and
component type

1

Array ADT Continued
Domain: All possible index values with all combinations

of associated component values.

Operations:
1) Copy array element value (e.g value = a[i])

 results: The ith component of a is copied
 into value
 requires: ?

2

Array ADT Continued
2) Update array element (e.g. a[i] = value)

 results: The ith component of a is
assigned value

 requires: ?

3) Array copy (e.g. a = b)

 results: All elements from b are copied
 into their respective positions in a

3

C Arrays
int a [100];

a[i] is a + (i * sizeof (int));

a is a constant pointer

4

Arrays and Pointers
int x, y;

int *array[2];

x = 1;

y = 2;

array[0] = &x;

array[1] = &y;

5

Dynamic Arrays
• What is the difference between:

 int a[10]

•  and

int* psArray = (int *) malloc(10 * sizeof(int));

6

Dynamic Arrays
• Dynamically sized arrays can be resized.
• How would we double the size of the array created below:

int* psArray = (int*) malloc(sizeof(int) * n)

7

Multi-dimensional Arrays p
• Obviously, we can extend the array ADT to include

multidimensional arrays. The only real change is the
structure which becomes something like:

•  component-type array[index1][index2]
•  component-type array[row][column]

8

Array Mapping Function (AMF)
•  The only real challenge in implementing arrays is how to

map a multi-dimensional array into linear space.
•  Two- dimensional AMF by rows:

•  right most index varies the fastest

• Consider: int a[10][5];

a[i][j] = base(a) + (i * 5 + j) * sizeof (int);

9

More AMF
• What is the AMF for each of the following assuming a row-

major mapping?

1.   double a[100];

2.   int b[5][10][15];

10

Arrays and Pointers
int x;

int array[2][3];

x = 1;

array[0][1] = x;

array[1][2] = 9;

11

Iterator
Design Pattern

Used to traverse all elements in a container

keep track of a current pointer in the container
(state!)

first()
hasNext()
next()
last()

Generally used in Object
Oriented Languages but
can be applied to any
data structure.

C arrays do not provide
this interface.

12

