
Hash Table

Date assigned: Friday, November 16, 201
Date due: Monday, December 3, 2012
Points: 50

We are implementing the Hash Table ADT as defined in the header file hashtable.h on Zeus in
/home/CS300Public/2012/hashtable. The Hash Table will rely on your Dynamic List to implement
chaining for collision handling. You must keep your chains in sorted order (ascending). A new list.h
exists in the hashtable directory for you to use. The key to the hash table is a char [100].

The user of the hash table must supply the hash function to the hashtable as a function pointer and a
compare function as a function pointer to compare keys in the hashtable.

The hashtable has the expected set of functions to insert, update, delete, and find data in the hash table.
A function htGetStats must fill the HT_Stats structure when called. This finds the longest chain, the
number of elements in the hash table, the average access time, and the number of empty buckets.

Additionally, an htVisit function and htVisitAndUpdate function are required, to allow the user to have
a function called on every element in the hashtable. The htVisitAndUpdate function allows the user's
function to update the data in the hash table during the visit.

In addition to implementing the data structure, you must provide a Makefile and test driver
(hashtableDriver.c that produces an executable named hashtableDriver) that thoroughly tests your data
structure. More about the driver is at the end of this assignment.

You may add any helper functions you need to hashtable.c. You may not alter hashtable.h or list.h in
anyway.

1. Your code is to be written in C using Eclipse. Programs written in other environments will not be
graded. Create an Eclipse project named cs300_hashtable_PUNetID. This project should contain
the directories: src, include, and bin. The driver, hashtableDriver, should be created at the top
level of the project, not in the bin directory.

2. The Makefile must contain the necessary targets to build the hashtableDriver as well as a clean
and dist target similar to the identically named targets in your Stack assignment. There is no
testMe target required for this assignment. Typing make on the command line should build
hashtableDriver.

3. Submit a file called cs300_hashtable_PUNetID.tar.gz into the CS300 Drop Box on the day in
which the assignment is due. This file must contain your Hash Table project and Dynamic List
project. Submit a color, double sided, stapled packet of code by that same deadline. The packet
should be in the following order:
 Makefile
 Hash Table Driver(.h then .c if you have both, otherwise just .c)
 hashtable.c (do not print list.h)
 Any extra .h/.c pairs you have.

4. Test one function at a time. This will lessen your level of frustration greatly.

5. You are to use the coding guidelines from V6.0 of the coding standards.
 Goals for this assignment:

1. Code and test your program one function at a time.

2. Write efficient/clean code

3. Use the debugger to effectively develop a correct solution

4. Thoroughly test your code.

The hashtable.h header file contains a list of ERRORCODEs that each function can produce.
Further, the ERRORCODEs are listed in order of precedence. If a function could produce multiple
ERRORCODEs, the function must return the ERRORCODE highest on the list.

The Hash Table Driver

To test your hashtable you are going to write a concordance. A concordance is a tool that records the
number of times each word is used in a text file. For example, if the input text is

It was the best of times,
It was the worst of times.

The output might be

best: 1
It: 2
was: 2
the: 2
of: 2
worst: 1

The hashtable driver MUST: read data from the file: “data/words.txt” and insert that data into the
hashtable. This file is supplied on the class website. The file contains words separated by a space. For
the purpose of this assignment, words do contain only letters, and you must convert all text to lower
case before hashing the text into the hash table.

The driver must produce a total count for the number of times each word is found in a plain text file by
using the hash table to store each word. for each word, if it is not currently in the database then insert it
with a count of 1, otherwise increment the count by 1.

* WORD FREQUENCY RESULTS *

WORD COUNT
---- -----
 IS 10
 NOW 5
 THE 23
TIME 1

and so on

UNIQUE WORDS: XXXXX
TOTAL WORDS: XXXXX
EMPTY SLOTS: XXXXX
LONGEST CHAIN: XXXXX
AVERAGE ACCESS TIME: XX.XX

The driver MUST implement the following hash function: sum the ASCII values in the key and mod
by the size of the table. This hash function must be used when you submit your code. You MUST
provide a second hash function of your own devising (OR just implement the mid-square algorithm
discussed in class). Be sure to thoroughly test this second hash function! The hash table must be size
997.

The driver MUST implement a compare function to compare two keys. Longer strings are greater.

