Assignment #2

Topic(s): C, Makefiles, Writing modular code Wednesday, September 5, 2012 Friday, September 14, 2012

Points: 15

The Greek astronomer Erathosthenes developed an algorithm for finding prime numbers up to some limit N in the third century B.C. The algorithm goes like this:

- 1. Write down a list of integers from 2 to N
- 2. Take the first number on the list that is not circled or crossed out and circle it because this number is prime
- 3. Cross out all remaining numbers that are a multiple of the number circled
- 4. Go to step 2 until done

Note: All circled numbers are prime

Example: Suppose the user typed in 10

2 3 4 5 6 7 8 9 10 (write down the list of integers from 2 to 10)

(2)3 X 5 X 7 X 9 X (circle 2 and mark all multiples of 2 with an X)

(2)(3)X 5 X 7 X X X (circle 3 and mark all multiples of 3 with an X)

(2)(3)X(5)X 7 X X X (circle 5 and mark all multiples of 5 with an X)

(2)(3)X(5)X(7)X X X (circle 7 and mark all multiples of 7 with an X)

(2)(3)X(5)X(7)X X X (the algorithm is done since no numbers remain that are not crossed out or circled)

Write a C program that implements the Sieve of Erathosthenes using an array. The user is to enter a number, N, greater than or equal to 2 and less than or equal to 1025 and your program is to store the values from 2 to N in an array. Finally print out all of the prime numbers between 2 and N inclusive with five values per line properly aligned in columns. That is, each number is to be right aligned in each column and each column is to take 5 places. Properly label your output. Make the array of size 1024.

Your output must look like the following (user input is in bold):

```
Please enter an integer that is greater than 2 and less than or equal
to 1025: 100
                     7
    2
          3
               5
                          11
   13
         17
              19
                    23
                          29
   31
         37
                          47
              41
                    43
   53
         59
              61
                    67
                          71
   73
         79
              83
                    89
                          97
```

In order to successfully complete this assignment, you need to write a complete modular program in Eclipse. Here is the boiler-plate that you must use for the assignment.

Step#1: Create a project called cs300_2_PUNetID so for me that would be cs300_2_khoj0332.

Step#2: Inside the project, create the folders **bin, src,** and **include**. Remember, C is case-sensitive.

Step#3: Inside the **include** folder create a file called **sieve.h** with the following code.

```
#ifndef SIEVE H
#define SIEVE H
#define MAX PRIMES 1024
void sieveLoad (int seive[], int n);
void sieveCalculate (int seive[], int n);
void sievePrint (int seive[], int n);
#endif /* SIEVE H */
Step#4: Inside the src folder create a file called sieve.c with the following code.
#include <stdio.h>
#include "../include/sieve.h"
/* Your function logic from sieve.h will go here */
Step#5: Inside the src folder create a file called sievedriver.c with the following code.
#include <stdio.h>
#include "../include/sieve.h"
int main (void)
{
  int sieve [MAX PRIMES];
  /* Your program logic will go here */
  return 0;
}
```

Step #7: Before writing any logic, build your project and make sure your project builds without errors.

Step #8: Write your program one function at a time testing each function for correctness.

- void sieveLoad (int seive[], int n): loads the array with the numbers from 2 n
- void sieveCalculate (int seive[], int n): determines which of the numbers in the array are prime.
- **void sievePrint (int seive[], int n):** displays the prime numbers in the format described above.

Notes:

- You can add functions above as needed.
- Don't forget to add **comments** and **test** your code thoroughly!
- Be sure that sieve.c does not contain code that will crash if given bad data!
- **To submit your code**, use the submit function on Zeus to submit **cs300_2_PUNetID.tar.gz** and turn in a color hard copy by 9:15am on the day the assignment is due.
- Remember, you can only submit your project once.
- List how many hours your worked on the assignment in the header comments.