
Chapter 15
More Inheritance

 Reading: pp. 869-921

 Good Problems to Work: pp. 877-878 15.2, 15.3;
pp. 883-884 15.4, 15.6 C, D; pp. 895-896 15.7,
15.8

 More Inheritance

 Polymorphism

 Virtual Functions

Spring 2014 CS250 - Intro to CS II 1

Polymorphism

 Code is said to be polymorphic if

executing the code with different types of

data produces different behavior

 Program in the general, rather than

program in the specific

 Virtual functions make polymorphism

possible

Spring 2014 CS250 - Intro to CS II 2

Consider

#include <iostream>
using namespace std;
class Def1
{
 public:
 Def1() {cout << "Def1" << endl;}
 ~Def1 () {cout << "~Def1" << endl;}
 void Foo () {cout << "Def1 Foo" << endl;}
};
class Def2 : public Def1
{
 public:
 Def2 () {cout << "Def2" << endl;}
 ~Def2 () {cout << "~Def2" << endl;}
 void Foo () {cout << "Def2 Foo" << endl;}
};

Spring 2014 CS250 - Intro to CS II 3

What is the output? Why?

int main ()

{

 Def1 *pcDef1 = new Def1;

 Def2 *pcDef2 = new Def2;

 pcDef1->Foo();

 pcDef2->Foo();

 delete pcDef1;

 delete pcDef2;

}

Spring 2014 CS250 - Intro to CS II 4

What is the output? Why?

int main ()

{

 Def1 *pcDef1 = new Def1;

 Def1 *pcDef2 = new Def2; // type Def2 to Def1

 pcDef1->Foo();

 pcDef2->Foo();

 delete pcDef1;

 delete pcDef2;

}

Spring 2014 CS250 - Intro to CS II 5

Virtual Functions

 You can tell the compiler to select the

more specialized version of a member

function by declaring the member function

to be a virtual function

 Declare a virtual function by prefixing its

declaration with the word virtual

Spring 2014 CS250 - Intro to CS II 6

What is the output? Why?

If the following 2 changes are made to the previous program,
what is the output? Why?

virtual void Foo () {cout << "Def1 Foo" << endl;}

virtual void Foo () {cout << "Def2 Foo" << endl;}

int main ()
{
 Def1 *pcDef1 = new Def1;
 Def1 *pcDef2 = new Def2;
 pcDef1->Foo();
 pcDef2->Foo();
 delete pcDef1;
 delete pcDef2;
}

 Spring 2014 CS250 - Intro to CS II 7

Virtual Destructor

 Any potential base class should have a virtual destructor

 Why? The compiler performs static binding on any destructor not declared virtual

If the following changes are made to the original program, what is the output? Why?

virtual ~Def1 () {cout << "~Def1" << endl;}

virtual void Foo () {cout << "Def1 Foo" << endl;}

virtual void Foo () {cout << "Def2 Foo" << endl;}

int main ()
{
 Def1 *pcDef1 = new Def1;
 Def1 *pcDef2 = new Def2;
 pcDef1->Foo();
 pcDef2->Foo();
 delete pcDef1;
 delete pcDef2;
}

Spring 2014 CS250 - Intro to CS II 8

