
CS250 Intro to CS II

Spring 2014

Spring 2014 CS250 - Intro to CS II 1

Chapter 9 - Arrays, Pointers, Dynamic
Memory

Chapter 14.4 Copy Constructors

 Reading: pp. 500-528

 Good Problems to Work: p.506 9.1, 9.3, 9.4, 9.5,
9.6, 9.7

 Reading: pp. 812-818

 Good Problems to Work: p. 858 6, 7, 8, 9, 10,
11, 18

Spring 2014 CS250 - Intro to CS II 2

Arrays and Pointers

 Array names can be used as constant
pointers

 Pointers can be used as array names

short numbers[] = {5, 10, 15, 20, 25};

cout << "numbers[0] = " << *numbers << endl;

cout << "numbers[1] = " << *(numbers + 1) << endl;

cout << "numbers[2] = " << numbers[2] << endl;

Spring 2014 CS250 - Intro to CS II 3

Problem

 Consider the following C++ segment

const int SIZE = 8;

int numbers[] = {5, 10, 15, 20, 25, 30, 35, 40};

int *pNumbers, sum = 0;

 Write the C++ code using only pointer
notation that will print the sum of the values
found in the array numbers

Spring 2014 CS250 - Intro to CS II 4

Pointer Arithmetic

 Some mathematical operations can be performed on
pointers

a) ++ and -- can be used with pointer variables

b) an integer may be added or subtracted from a
pointer variable

c) a pointer may be added or subtracted from
another pointer

If the integer pointer variable pInt is at location 1000, what is
the value of pInt after pInt++; is executed?

Spring 2014 CS250 - Intro to CS II 5

Pointers and Functions

 What are the two ways of passing arguments into
functions?

 Write two functions square1 and square2 that
will calculate and return the square of an integer.

o square1 should accept the argument passed by
value,

o square2 should accept the argument passed by
reference.

Spring 2014 CS250 - Intro to CS II 6

Pointers as Function Arguments

 A pointer can be a formal function parameter

 Much like a reference variable, the formal

function parameter has access to the actual

argument

 The address of the actual argument is

passed to the formal argument

Spring 2014 CS250 - Intro to CS II 7

Pointers as Function Arguments

void square3 (int *pNum)

{

 *pNum *= *pNum;

}

 What would a function call to the above function
look like?

Spring 2014 CS250 - Intro to CS II 8

Pointers to Constants

 A pointer to a constant means that the compiler

will not allow us to change the data that the pointer

points to.

void printArray (const int *pNumbers)

{

}

Spring 2014 CS250 - Intro to CS II 9

Constant Pointers

 A constant pointer means that the compiler will not

allow us to change the actual pointer value BUT

we can change the data that the pointer points to.

void printArray (int * const pNumbers)

{

}

Spring 2014 CS250 - Intro to CS II 10

Constant Pointers to Constants

 A constant pointer to a constant means the
compiler will not allow us to change the actual
pointer value OR the data that the pointer points
to.

void printArray (const int * const pNumbers)

{

}

Spring 2014 CS250 - Intro to CS II 11

Problem

Using pointer notation, write a C++ function
printCharacters that will accept a character array
and the size of the array. The function will print
each element of the array on a separate line.

Spring 2014 CS250 - Intro to CS II 12

Dynamic Memory Allocation

 Variables can be created and destroyed

while a program is running

 new is used to dynamically allocate space

from the heap. A pointer to the allocated

space is returned

 delete is used to free dynamically

allocated space

Spring 2014 CS250 - Intro to CS II 13

Using new and delete

int *pInt;

pInt = new int;

*pInt = 5;

cout << *pInt << endl;

delete pInt;

Spring 2014 CS250 - Intro to CS II 14

Pointers to Arrays

 We can dynamically create space for an

array

int *pAges, sum = 0;

pAges = new int[100];

for (int i = 0; i < 100; ++i)

{

 *(pAges + i) = i; // or pAges[i] = i;

}

delete [] pAges;

Spring 2014 CS250 - Intro to CS II 15

NULL Pointer

 A null pointer contains the address 0

 The address 0 is an unusable address

pAges = new int[100];
if (NULL == pAges)
{
 cout << “Memory Allocation Error\n”;
 exit (EXIT_FAILURE);
}

 Only use delete with pointers that were used with
new

Spring 2014 CS250 - Intro to CS II 16

Memberwise Assignment

Consider the following C++ code:

Rectangle cBox1 (10.0, 5.0), cBox2;

What is the meaning of:

cBox2 = cBox1;

Spring 2014 CS250 - Intro to CS II 17

Destructors

 The opposite of constructors

 Have the same name as the class, with a ~ in front
of it

 Called whenever an object is destroyed

 A destructor has no arguments and or return value

 Only one destructor allowed!

 No need for us to explicitly declare a destructor
unless there are pointer variables in the class

CS250 - Intro to CS II 18 Spring 2014

Constructor/Destructor Example

class Test
{
 public:
 Test(int);
 ~Test();

 private:
 int mId;
};

Test::Test(int i)
{
 mId = i;
 cout << "constructor for " << mId << " is called\n";
}
Test::~Test()
{
 cout << "destructor for " << mId << " is called\n";
}

CS250 - Intro to CS II 19 Spring 2014

What is the output?

void funct();

int main()

{

 Test cTest1(1);

 funct();

 Test cTest3(3);

 return EXIT_SUCCESS;

}

void funct()

{

 Test cTest2(2);

}

CS250 - Intro to CS II 20 Spring 2014

Copy Constructor

 A copy constructor is a special constructor called
when a new object is created and initialized with
the data from another object

 Most times the default memberwise assignment
is OK. When is this not the case?

Spring 2014 CS250 - Intro to CS II 21

class Person Interface

#ifndef PERSON_H
#define PERSON_H

class Person
{
 public:
 Person (char * = NULL, unsigned short = 0);
 Person (const Person &);
 ~Person ();
 const char *getName () const;
 int getAge () const;

 private:
 char *mpszName;
 unsigned short mAge;
};

#endif

Spring 2014 CS250 - Intro to CS II 22

class Person Implementation

#include "Person.h"

#include <iostream>

using namespace std;

// Constructor

Person::Person (char *pszName, int age)

{

 if (NULL != pszName)

 {

 int nameLength = strlen (pszName);

 mpszName = new char[nameLength + 1];

 strncpy_s (mpszName, nameLength + 1,

 pszName, nameLength + 1);

 mAge = age;

 }

}

Spring 2014 CS250 - Intro to CS II 23

class Person Implementation

// Copy Constructor used to initialize an object

// being created

Person::Person (const Person &rcPerson)

{

 if (NULL != rcPerson.mpszName)

 {

 int nameLength = strlen (rcPerson.mpszName);

 mpszName = new char[nameLength + 1];

 strncpy_s (mpszName, nameLength + 1,

 rcPerson.mpszName, nameLength + 1);

 mAge = rcPerson.mAge;

 }

}

Spring 2014 CS250 - Intro to CS II 24

class Person Implementation

Person::~Person ()

{

 delete [] mpszName;

}

const char *Person::getName () const

{

 return mpszName;

}

unsigned short Person::getAge () const

{

return mAge;

}

Spring 2014 CS250 - Intro to CS II 25

Person Driver

#include "Person.h"

#include <iostream>

using namespace std;

int main ()

{

Person cPerson ("John Smith", 18);

cout << cPerson.getName () << " is "

 << cPerson.getAge () << " years old." << endl;

return EXIT_SUCCESS;

}

Spring 2014 CS250 - Intro to CS II 26

What happens?

 If we add the following code before the return,
what happens?

cTempPerson = cPerson;

cout << cTempPerson.getName () << " is "

 << cTempPerson.getAge () << " years old."

 << endl;

Spring 2014 CS250 - Intro to CS II 27

Results … Why?

Spring 2014 CS250 - Intro to CS II 28

Problem Still Exists

 What is the difference?

Person cTempPerson = cPerson;

cTempPerson = cPerson

 What is the solution?

 Grab the CopyConstructor Solution in CS250 Public and
let’s make sure we understand this concept

Spring 2014 CS250 - Intro to CS II 29

