
1

CS250 Introduction to Computer Science II 1

Abstract Classes 15.3

Review

• We have covered polymorphism
o What is it?

• And virtual functions
o What are those?

• Today we will learn about
o Abstract class

o Pure virtual functions

CS250 Introduction to Computer Science II 2

Abstract Classes

• Consider a base class called GameObject
that contains a draw function

• Avatar, Monster, and Castle are classes that
are derived from GameObject, and each one
has a unique draw function

• If some kind of array of GameObjects is
maintained, a simple draw command can be
sent to each object invoking the specific
draw method for each object type

• This is where we are heading

CS250 Introduction to Computer Science II 3

Abstract Classes

• An abstract class is a class where the
programmer never intends to instantiate an
object of the abstract class type

• These classes are typically base classes
and are used in an inheritance hierarchy to
build more generic derived classes

• Parts of the abstract class are not
implemented in the base class; therefore,
this logic must be implemented in the
derived class

2

CS250 Introduction to Computer Science II 4

Concrete Classes

• A concrete class is any class that can be
instantiated
o An object of that class can be created

• Consider an abstract class called Shape2D
with concrete classes Circle, Square, and
Triangle derived from Shape2D

• Shape2D has a draw method that is not
implemented while Circle, Square, and
Triangle must have implemented draw
methods

CS250 Introduction to Computer Science II 5

Pure Virtual Functions

• A class is made abstract by having one or
more pure virtual functions associated with
the class as follows:
o virtual void functionName () const = 0;

• Each derived class must provide its own
draw function that overrides the draw
function of the abstract class

• How is this different from virtual functions?

CS250 Introduction to Computer Science II 6

Pure Virtual Functions

• A virtual function
o Allows the derived class the ability to override

the function and

o Must have an implementation

• A pure virtual function
o Requires the derived class to override the

function

o Cannot have an implementation

3

CS250 Introduction to Computer Science II 7

Abstract Base Class

class Shape

{

protected:

 int posX, posY;

public:

 virtual void draw() = 0;

 void setPosition(int pX, int pY)

 {

 posX = pX;

 posY = pY;

 }

};

CS250 Introduction to Computer Science II 8

Derived Classes
class Rectangle : public Shape

{

public:

 virtual void draw()

 {

 cout << "Drawing rectangle at " << posX << " "

 << posY << endl;

 }

};

class Hexagon : public Shape

{

public:

 virtual void draw()

 {

 cout << "Drawing hexagon at " << posX << " "

 << posY << endl;

 }

};

CS250 Introduction to Computer Science II 9

Driver
int main()

{

 const int NUM_SHAPES = 3;

 Shape * shapeArray[] = { new Hexagon(), new Rectangle(),

 new Hexagon() };

 // Set positions of all the shapes.

 int posX = 5, posY = 15;

 for (int k = 0; k < NUM_SHAPES; k++)

 {

 shapeArray[k]->setPosition(posX, posY);

 posX += 10;

 posY += 10;

 };

 // Draw all the shapes at their positions.

 for (int j = 0; j < NUM_SHAPES; j++)

 { shapeArray[j]->draw(); }

4

CS250 Introduction to Computer Science II 10

Dynamic vs. Static Binding

• Compiler binds the name of a function when
it selects the code that should be executed
when the function name is invoked
o Static binding: happens at compile time

o Dynamic binding: happens at run time

