
1

4/6/09 CS250 Introduction to Computer Science II 1

Section 11.6

Operator Overloading

4/6/09 CS250 Introduction to Computer Science II 2

Operator Overloading

• Earlier in the semester we created a class
for rational numbers

• An example of how a client would use that
class is:
Rational cRat1(3, 4);
Rational cRat2(2, 5);
Rational cRat3, cRat4;
cRat3 = cRat1.multiplication(cRat2);
cRat4 = cRat1.addition(cRat2);

• It would be much easier if we could instead
write
cRat3 = cRat1 * cRat2;
cRat4 = cRat1 + cRat2;

4/6/09 CS250 Introduction to Computer Science II 3

Operator Overloading

• We defined a print function to output the
contents of a set
cRat1.printRational();

• Wouldn’t it be more efficient and more
consistent with C++ if we could write
cout << cRat1;

2

4/6/09 CS250 Introduction to Computer Science II 4

The How of Operator Overloading

• Write a function definition for the operator,
but the function name becomes operator
followed by the symbol
o operator<<

o operator+

o operator==

4/6/09 CS250 Introduction to Computer Science II 5

Operator Overloading

• Operator overloading can be achieved in
one of two ways
o A member function of the class

o A friend function of the class

• Using operator overloading through member
functions has the restriction that the object of
the class must always be to the left of the
operator
o Not useful for the insertion operator <<

4/6/09 CS250 Introduction to Computer Science II 6

friend Functions

• Only the member functions of a class have
direct access to the private data members of
the class

• friend functions are friends of the class
that are defined outside of the class but still
have access to private data members

3

4/6/09 CS250 Introduction to Computer Science II 7

friend Functions

• The function prototype is placed in the class,
preceded by the keyword friend

• The function is able to directly access the
private data members

4/6/09 CS250 Introduction to Computer Science II 8

friend Functions

• The friend function could be a member
function in another class

• A class could also be made a friend of an
existing class
o In this case, every member function of the friend

class will have access to this class’s private data

4/6/09 CS250 Introduction to Computer Science II 9

operator<<

• << must be overloaded using friend
functions

• The return value of operator<< is an
ostream&

• The arguments will be the output stream and
an object of the class

4

4/6/09 CS250 Introduction to Computer Science II 10

Example

class PhoneNumber

{

 friend ostream &operator<<(ostream&,

 const PhoneNumber &);

 friend istream &operator>>(istream&, PhoneNumber &);

private:

 char areaCode[4]; // 3-digit area code and null

 char exchange[4]; // 3-digit exchange and null

 char line[5]; // 4-digit line and null

};

4/6/09 CS250 Introduction to Computer Science II 11

Definition

ostream &operator<<(ostream &output, const
PhoneNumber &num)

{

 output << "(" << num.areaCode << ") "

 << num.exchange << "-" << num.line;

 return output;

}

4/6/09 CS250 Introduction to Computer Science II 12

Driver

int main()

{

 PhoneNumber phone;

 cout << "The phone number is: ";

 cout << phone << endl;

 return 0;

}

5

4/6/09 CS250 Introduction to Computer Science II 13

Your Turn
class Rational
{
public:
 Rational(int = 0, int = 1);
 Rational addition(const Rational &);
 Rational subtraction(const Rational &);
 Rational multiplication(const Rational &);
 Rational division(const Rational &);
 void printRational ();
private:
 int numerator;
 int denominator;
 void reduction();
};

• Replace the printRational() function
with operator<<

4/6/09 CS250 Introduction to Computer Science II 14

Overloading Binary Operators

• Examples of binary operators that can be
overloaded are +, -, *, and /

• Unlike the insertion and extraction operators
that are overloaded as friend functions, the
binary operators are overloaded as regular
member functions of the class

4/6/09 CS250 Introduction to Computer Science II 15

Example

• Let us add functionality to the Rational class
to support the following:
Rational cRat1(3, 4);

Rational cRat2(2, 9);

Rational cRat3;

cRat3 = cRat1 + cRat2;

6

4/6/09 CS250 Introduction to Computer Science II 16

Member Function Prototype

• In the class interface, let us add the function
prototype for the overloaded operator

RationalNumber operator+(const

 RationalNumber &);

4/6/09 CS250 Introduction to Computer Science II 17

Member Function Definition

RationalNumber operator+(const

 RationalNumber & r)

{

 RationalNumber add;

 add.numerator = numerator * r.denominator +

 denominator * r.nominator;

 add.denominator = denominator * r.denominator;

 add.reduction();

 return add;

}

4/6/09 CS250 Introduction to Computer Science II 18

Your Turn

• Overload the multiplication operator in the
rational class

