CS250 Class Exercise
Date: Wednesday, March 18, 2009

Complete the following program.

// class Point23 represents a point that may be two- or
// three-dimensional, depending on which constructor is used to create
// it_. Coordinates are stored in a dynamically allocated array.

class Point23

{

public:
// default class constructor (with no arguments):
Point23();

// class constructor that creates a 2-dimensional point with
// coordinates xval and yval:
Point23(int xval, int yval);

// class constructor that creates a 3-dimensional point with
// coordinates xval, yval, and zval:
Point23(int xval, int yval, int zval);

// class destructor:
~Point23();

// member functions for getting values of x, y, and z (if iIt"s present)
int Get_X() const;
int Get_Y() const;
int Get_Z() const;

// private data members: size of the point and a pointer to the array of
// coordinates:

private:

int Size;

int *DataPtr;
};



// default class constructor creates a 2-dimensional point with
// coordinates x = 0, y = 0.
Point23: :Point23()

{ -
Size = 2;
// Exercise 1: allocate memory for an array of two integers
// Exercise 1: initialize the coordinates to 0Os:

}

// class constructor creates a 2-dimensional point with
// coordinates xval, yval.

Point23: :Point23(int xval, int yval)
{

Size = 2;

// Exercise 1: allocate memory for an array of two integers

// Exercise 1: initialize the coordinates:



// class constructor creates a 3-dimensional point with
// coordinates xval, yval, and zval

Point23: :Point23(int xval, int yval, int zval)

{ -
Size = 3;
// Exercise 1: allocate memory for an array of three integers
// Exercise 1: initialize the coordinates:

}

// class destructor deallocates all memory allocated for an object of the
// class
Point23: :~Point23()

{

// Exercise 2: deallocate memory for the array of coordinates

}

int Point23::Get X() const
{

// every point has an x coordinate
return DataPtr[0];

}

int Point23::Get_Y() const
{

// every point has a y coordinate
return DataPtr[1];

}

int Point23::Get Z() const
// check if the point has a z coordinate:
if (Size == 3)
{

}

return DataPtr[2];



}
//

in
{
//

//

//
//

//

//
//
//
//

else

{
cout << "attempt to return a third coordinate of a 2D point"
<< endl;
exit();
}
main: testing the class Point23

t main(Q)

declaring points as variables (statically):
Point23 pl; // default: 2D point with coordinates 0, O
Point23 p2(3, 4, 5); // 3D point with coordinates 3, 4, 5

testing pl, p2:

cout << "'point pl: " << endl;

cout << "X = " << pl.Get_ X << "y =" << pl.Get_Y() << endl;

cout << "'point p2: " << endl;

cout << "X = " << p2.Get_ X() << "My = " << p2.Get_Y() << Mz =" <<

p2.Get_Z() << endl;

as an example of allocating memory for an instance of a

class, we declare a point dynamically:

Point23 *Ptrl; // declaring a pointer to a point

Ptrl = new Point23(7,8);// allocating memory, initializing the point
// to a 2D point with coordinates 7, 8.

testing the dynamically allocated point:
cout << "point pointed to by Ptrl " << endl;
cout << "X = " << Ptrl->Get X() << "y = " << Ptrl->Get Y() << endl;

// Exercise 3: deleting the dynamically allocated point:

Note: there is no need to delete pl, p2, since these are local
variables which are deleted automatically when the program finishes.
Deleting pl, p2 would be an error, since they have not been allocated

by "new'".

return O;



