
 1

CS250 Class Exercise

Date: Wednesday, March 18, 2009

Complete the following program.

// class Point23 represents a point that may be two- or
// three-dimensional, depending on which constructor is used to create
// it. Coordinates are stored in a dynamically allocated array.

class Point23
{
public:
 // default class constructor (with no arguments):
 Point23();

 // class constructor that creates a 2-dimensional point with
 // coordinates xval and yval:
 Point23(int xval, int yval);

 // class constructor that creates a 3-dimensional point with
 // coordinates xval, yval, and zval:
 Point23(int xval, int yval, int zval);

 // class destructor:
 ~Point23();

 // member functions for getting values of x, y, and z (if it's present)
 int Get_X() const;
 int Get_Y() const;
 int Get_Z() const;

// private data members: size of the point and a pointer to the array of
// coordinates:
private:
 int Size;
 int *DataPtr;
};

 2

// default class constructor creates a 2-dimensional point with
// coordinates x = 0, y = 0.
Point23::Point23()
{
 Size = 2;

 // Exercise 1: allocate memory for an array of two integers

 // Exercise 1: initialize the coordinates to 0s:

}

// class constructor creates a 2-dimensional point with
// coordinates xval, yval.

Point23::Point23(int xval, int yval)
{
 Size = 2;

 // Exercise 1: allocate memory for an array of two integers

 // Exercise 1: initialize the coordinates:

}

 3

// class constructor creates a 3-dimensional point with
// coordinates xval, yval, and zval

Point23::Point23(int xval, int yval, int zval)
{
 Size = 3;

 // Exercise 1: allocate memory for an array of three integers

 // Exercise 1: initialize the coordinates:

}

// class destructor deallocates all memory allocated for an object of the
// class
Point23::~Point23()
{
 // Exercise 2: deallocate memory for the array of coordinates

}

int Point23::Get_X() const
{
 // every point has an x coordinate
 return DataPtr[0];
}

int Point23::Get_Y() const
{
 // every point has a y coordinate
 return DataPtr[1];
}

int Point23::Get_Z() const
{
 // check if the point has a z coordinate:
 if (Size == 3)
 {
 return DataPtr[2];
 }

 4

 else
 {
 cout << "attempt to return a third coordinate of a 2D point"
 << endl;
 exit(1);
 }
}

// main: testing the class Point23

int main()
{
// declaring points as variables (statically):
 Point23 p1; // default: 2D point with coordinates 0, 0
 Point23 p2(3, 4, 5); // 3D point with coordinates 3, 4, 5

// testing p1, p2:
 cout << "point p1: " << endl;
 cout << "x = " << p1.Get_X() << " y = " << p1.Get_Y() << endl;

 cout << "point p2: " << endl;
 cout << "x = " << p2.Get_X() << " y = " << p2.Get_Y() << " z = " <<
 p2.Get_Z() << endl;

// as an example of allocating memory for an instance of a
// class, we declare a point dynamically:
 Point23 *Ptr1; // declaring a pointer to a point
 Ptr1 = new Point23(7,8); // allocating memory, initializing the point
 // to a 2D point with coordinates 7, 8.

// testing the dynamically allocated point:
 cout << "point pointed to by Ptr1 " << endl;
 cout << "x = " << Ptr1->Get_X() << " y = " << Ptr1->Get_Y() << endl;

 // Exercise 3: deleting the dynamically allocated point:

// Note: there is no need to delete p1, p2, since these are local
// variables which are deleted automatically when the program finishes.
// Deleting p1, p2 would be an error, since they have not been allocated
// by "new".

 return 0;
}

