Destructors, Memberwise
Assignment, Pointers

Chapters 7 and 10

C8250 to Computer Science Il 1

Destructors (7.16)

» The opposite of constructors

» Have the same name as the class, with a ~ in front
of it

« Called whenever an object is destroyed
» A destructor has no arguments and or return value
* Only one destructor allowed!

» No need for us to explicitly declare a destructor

C8250 to Computer Science I 2

Example

class Test
{
private:
int id;
public:
Test (int) ;
~Test () ;
}i

Test::Test(int i)
{

id = i;

cout << "constructor for " << id << " is called\n";
}
Test::~Test()
{

cout << "destructor for " << id << " is called\n";
}

C8250 to Computer Science Il 3

What is the Output?

void funct();

int main()

{
Test cTestl(1);
funct () ;
Test cTest3(3);

return 0;

}

void funct()
{

Test cTest2(2);
}

C8250 to Computer Science Il 4

Default Memberwise Assignment

« Itis possible to assign an object to another
object of the same type

« This will assign every data member in the
first object to the value of the equivalent data
member in the second object

Example

Time cTestl (9, 25, 32);
Time cTest2;

cTest2 = cTestl;

cTest2.printStandard() ;

Pointers

Pointers are one of the most powerful
features of C++

Pointers give programmers more control
over the computer's memory

A pointer is the memory address of a
variable

A pointer is one of the most difficult and
important concepts in C/C++

Variable Addresses

A variable’s address is the address of the
first byte allocated to that variable
Why the first byte?

How can we find out the size of data types
on a machine?

2.1 Pointer Declarations

The memory address of a variable can be
stored in another variable called a pointer

Pointers are declared using the * operator
The following declares a pointer to an
integer

int *pLength;
In the following statement, length is an
integer and pLength is a pointer to an
integer

int *pLength, length;

2.2 Pointer Declarations (10.2)

* How would you create two pointers to
doubles?

* Note:

o Using our coding standards, we will use the
convention that all pointer variables start with a
small p (eg. pCount, pX)

2.3 Address Operator (10.1)

* How do we assign to a pointer the address
of a variable?

.

Use the address operator (&)

.

& returns the memory address of it's
operand

« Example:
plLength = &length;

* Where have we used & before?

2.4 Address Operator

* Operand of the address operator must be an
Ivalue

* An lvalue is something to which a value can
be assigned

» Address operator cannot be applied to
constants
int *pX;
int const NUM = 98;
pX = &NUM; // ERROR
pX = &8; // ERROR

2.5 Pointer Operations (10.2)

int x, *pX;

x = 8; // set x to a value of 8

pX = &x; // set the pointer variable to point
// to the address of x

cout << "x is: " << x << endl;
cout << "Size of x is: " << sizeof(x) << endl;
cout << "Address of x is: " << pX << endl;

cout << "Address of x is: " << &x << endl;

2.6 Indirection Operator

* How can we use the pointer variable to modify the value in
the variable?

o i.e. how to use pX to change the value of x
* Answer: use the indirection operator (*)
» The * operator dereferences the pointer
o You are actually working with whatever the pointer is pointing to

» Using the example on the previous slide
cout << "pX is pointing to: " << *pX << endl;

2.7 Indirection Operator

« Using * as we did in the previous example is
called dereferencing the pointer

« Using our example, how can we dereference
pX so that it changes the value of x from 8 to
107?

* How can we change the value of x to a
value entered by the user using the
indirection operator?

2.8 Common Pointer Mistakes

» What is wrong with the following?

2.9 Pointers and Functions (10.7)

* What are the two ways of passing
arguments into functions?

« Write two functions squarel and square2
that will calculate the square of an integer.

squarel should accept the argument passed
by value,

square2 should accept the argument passed
by reference.

Pointers and Functions (10.7)

« There is a third way of passing arguments
into functions
* It's called

o passing by reference without using reference
arguments

o Or passing by reference using pointers

» The address of the argument is passed
instead of the argument itself

2.10 Passing by reference (10.7)

void square3(int *pNum)

{

*pNum *= *pNum;

» What would a function call to the above
function look like?

2.11 Function Call (10.7)

int val = 5;
square3 (&val) ;

cout << val << endl;

