
1CS250 Introduction to Computer Science II

Chapters 7 and 10

Destructors, Memberwise
Assignment, Pointers

2CS250 Introduction to Computer Science II

Destructors (7.16)

• The opposite of constructors

• Have the same name as the class, with a ~ in front
of it

• Called whenever an object is destroyed

• A destructor has no arguments and or return value

• Only one destructor allowed!

• No need for us to explicitly declare a destructor

3CS250 Introduction to Computer Science II

Example
class Test
{
 private:
 int id;
 public:
 Test(int);
 ~Test();
};

Test::Test(int i)
{
 id = i;
 cout << "constructor for " << id << " is called\n";
}
Test::~Test()
{
 cout << "destructor for " << id << " is called\n";
}

4CS250 Introduction to Computer Science II

What is the Output?
void funct();

int main()
{
 Test cTest1(1);
 funct();

 Test cTest3(3);

 return 0;
}

void funct()
{
 Test cTest2(2);
}

5

Default Memberwise Assignment

• It is possible to assign an object to another
object of the same type

• This will assign every data member in the
first object to the value of the equivalent data
member in the second object

6

Example

Time cTest1(9, 25, 32);
Time cTest2;

cTest2 = cTest1;

cTest2.printStandard();

7

Pointers

• Pointers are one of the most powerful
features of C++

• Pointers give programmers more control
over the computer’s memory

• A pointer is the memory address of a
variable

• A pointer is one of the most difficult and
important concepts in C/C++

8

Variable Addresses

• A variable’s address is the address of the
first byte allocated to that variable

• Why the first byte?

• How can we find out the size of data types
on a machine?

9

2.1 Pointer Declarations (10.2)

• The memory address of a variable can be
stored in another variable called a pointer

• Pointers are declared using the * operator

• The following declares a pointer to an
integer
o int *pLength;

• In the following statement, length is an
integer and pLength is a pointer to an
integer
o int *pLength, length;

10

2.2 Pointer Declarations (10.2)

• How would you create two pointers to
doubles?

• Note:
o Using our coding standards, we will use the

convention that all pointer variables start with a
small p (eg. pCount, pX)

11

2.3 Address Operator (10.1)

• How do we assign to a pointer the address
of a variable?

• Use the address operator (&)

• & returns the memory address of it’s
operand

• Example:
o pLength = &length;

• Where have we used & before?

12

2.4 Address Operator

• Operand of the address operator must be an
lvalue

• An lvalue is something to which a value can
be assigned

• Address operator cannot be applied to
constants
o int *pX;

o int const NUM = 98;

o pX = &NUM; // ERROR

o pX = &8; // ERROR

13

2.5 Pointer Operations (10.2)

int x, *pX;

x = 8; // set x to a value of 8

pX = &x; // set the pointer variable to point

 // to the address of x

cout << "x is: " << x << endl;

cout << "Size of x is: " << sizeof(x) << endl;

cout << "Address of x is: " << pX << endl;

cout << "Address of x is: " << &x << endl;

14

2.6 Indirection Operator

• How can we use the pointer variable to modify the value in
the variable?

o i.e. how to use pX to change the value of x

• Answer: use the indirection operator (*)

• The * operator dereferences the pointer
o You are actually working with whatever the pointer is pointing to

• Using the example on the previous slide
o cout << "pX is pointing to: " << *pX << endl;

15

2.7 Indirection Operator

• Using * as we did in the previous example is
called dereferencing the pointer

• Using our example, how can we dereference
pX so that it changes the value of x from 8 to
10?

• How can we change the value of x to a
value entered by the user using the
indirection operator?

16

2.8 Common Pointer Mistakes

• What is wrong with the following?

int x, *pX;

x = 8;

*pX = 2;

pX = 9;

*x = 4;

17

2.9 Pointers and Functions (10.7)

• What are the two ways of passing
arguments into functions?

• Write two functions square1 and square2
that will calculate the square of an integer.
o square1 should accept the argument passed

by value,
o square2 should accept the argument passed

by reference.

18

Pointers and Functions (10.7)

• There is a third way of passing arguments
into functions

• It’s called
o passing by reference without using reference

arguments

o Or passing by reference using pointers

• The address of the argument is passed
instead of the argument itself

19

2.10 Passing by reference (10.7)

void square3(int *pNum)

{

 *pNum *= *pNum;

}

• What would a function call to the above
function look like?

20

2.11 Function Call (10.7)

int val = 5;

square3(&val);

cout << val << endl;

