
1

Sections 7.12, 7.13, 7.14, and 7.15

Classes, Objects, Separation,
and Constructors

2

A Time Class
class Time
{
 private:
 int hour; // 0 - 23 (24-hour clock format)
 int minute; // 0 - 59
 int second; // 0 - 59

 public:
 void setTime(int h, int m, int s);
 void printUniversal(); // 13:27:06
 void printStandard(); // 1:27:06 PM

}; // end class Time

3

Member Function Definitions

• How would we write the definitions of the
member functions?

• Where would they be written?

4

Separating Classes into Files (7.13)

• Every program we have written so far has
been in one file (projectName.cpp)

• One of the principles of Software
Engineering is to separate the interface from
the implementation

• We will be storing class declarations and
member functions in their own separate files

5

Separation

• The class declaration in a header file
(.h). The name of the file is usually the
same as the class name (e.g. Time.h)

• The definitions of the class member
functions in a source file (.cpp). The
name of the file is usually the same as
the class name (e.g. Time.cpp)

• The main program is stored in its own
source file (.cpp)

6

Splitting the Time Program

• How would we split the Time program into
different files?

7

Notes on Separating into Files

• The class declaration should contain an
include guard to prevent the header file from
being included more than once
#ifndef TIME_H

#define TIME_H

Class declaration

#endif

8

Notes on Separating into Files

• The file containing the member function
definitions (e.g. time.cpp) needs to include
the class header
o #include “time.h”

• The “ indicate that the file is located in the
current project directory

• Note: Only header files are ever included
o #include “time.cpp” // ERROR!

9

Constructor (7.14)

• Special member function to initialize data
members

• It has the same name as the class

• It does not have a return value

• The constructor is called whenever an object
of that class is created (instantiated)

• Time();

10

Constructor Example

• What would the implementation of the
constructor look like?

Time::Time()

{

 hour = minute = second = 0;

}

11

Questions

• Which of the following statements is
invalid and why?
o Time cTimeArray[5];
for(int i = 0; i < 5; i++)
{
 cout <<
cTimeArray[i].printStandard();
}

o Time cTime;
cTime.hour = 14;

12

Object-Oriented Features

• Information hiding
o Separate the implementation from the interface
o Objects are concerned with the interface, for

example what functions are available to
manipulate the data

o Objects are not concerned with the
implementation. They do not care how the
functions do what they do, as long as they do it
correctly

13

Overloading Constructors

• Recall from last semester that it is possible
to create multiple functions with the same
name

• How?

14

Overloaded Constructors

• Overloaded constructors are the same as
overloaded functions

• We could have multiple constructors in the
Time class, each of which accepts a
different number of arguments

• The appropriate constructor will be chosen
based on the number of arguments used
when creating the object

• Create multiple constructors for Time

15

Default Constructor

• The default constructor is the constructor
with no arguments

• If you do not create any constructors in your
class, then the default constructor will be
created for you

• If you have a constructor that takes
arguments, then the default constructor will
be created for you

• It is good programming practice to always
create a default constructor, why?

16

Default Arguments (7.15)

• You can set default arguments to
constructors

• In the class definition, the constructor
prototype will be
o Time(int = 0, int = 0, int = 0);

• The function definition will be
Time::Time(int hr, int min, int sec)
{

setTime(hr, min, sec);

}

17

Using Default Arguments

• By having default arguments in the
constructor, we can now create objects of
the Time class as follows:
Time cT1;

Time cT2(9);

Time cT3(9, 25);

Time cT4(9, 25, 30);

Time cT5(45, 90, 72);

