
1

4/9/07 CS250 Introduction to Computer Science II 1

Section 15.3

Abstract Classes

4/9/07 CS250 Introduction to Computer Science II 2

So Far

• We have covered polymorphism
o What is it?

• And virtual functions
o What are those?

• Today we will learn about
o Abstract class

o Pure virtual functions

4/9/07 CS250 Introduction to Computer Science II 3

Abstract Classes

• Consider a base class called GameObject
that contains a draw function

• Avatar, Monster, and Castle are classes that
are derived from GameObject, and each one
has a unique draw function

• If some kind of array of GameObjects is
maintained, a simple draw command can be
sent to each object invoking the specific
draw method for each object type

• This is where we are heading

2

4/9/07 CS250 Introduction to Computer Science II 4

Abstract Classes

• An abstract class is a class where the
programmer never intends to instantiate an
object of the abstract class type

• These classes are typically base classes
and are used in an inheritance hierarchy to
build more generic derived classes

• Parts of the abstract class are not
implemented in the base class; therefore,
this logic must be implemented in the
derived class

4/9/07 CS250 Introduction to Computer Science II 5

Concrete Classes

• A concrete class is any class that can be
instantiated
o An object of that class can be created

• Consider an abstract class called Shape2D
with concrete classes Circle, Square, and
Triangle derived from Shape2D

• Shape2D has a draw method that is not
implemented while Circle, Square, and
Triangle must have implemented draw
methods

4/9/07 CS250 Introduction to Computer Science II 6

Pure Virtual Functions

• A class is made abstract by having one or
more pure virtual functions associated with
the class as follows:
o virtual void functionName () const = 0;

• Each derived class must provide its own
draw function that overrides the draw
function of the abstract class

• How is this different from virtual functions?

3

4/9/07 CS250 Introduction to Computer Science II 7

Pure Virtual Functions

• A virtual function
o Allows the derived class the ability to override

the function and

o Must have an implementation

• A pure virtual function
o Requires the derived class to override the

function

o Cannot have an implementation

4/9/07 CS250 Introduction to Computer Science II 8

Example

• Let us create an abstract class called shape,
and from this class inherit a point, circle, and
cylinder class

• The abstract class will contain two pure
virtual functions
o print: to print the data for the shape

o getName: returns a string containing the name
of the shape (i.e. point, circle, or cylinder)

4/9/07 CS250 Introduction to Computer Science II 9

Example

• The abstract class will also contain two
virtual functions:
o getArea: returns the area of the shape

o getVolume: returns the volume of the shape

• Why would these be defined as virtual
functions and not pure virtual functions?

4

4/9/07 CS250 Introduction to Computer Science II 10

Shape Header

#ifndef SHAPE_H

#define SHAPE_H

#include <string>

using namespace std;

class Shape {

public:

 virtual double getArea() const;

 virtual double getVolume() const;

 virtual string getName() const = 0;

 virtual void print() const = 0;

};

#endif

4/9/07 CS250 Introduction to Computer Science II 11

Shape Definition

#include <iostream>

using namespace std;

#include "shape.h"

double Shape::getArea() const

{

 return 0.0;

}

double Shape::getVolume() const

{

 return 0.0;

}

4/9/07 CS250 Introduction to Computer Science II 12

Your Turn

• Using paired programming, I would like you
to implement the shape, point, circle,
cylinder hierarchy

• I have already implemented shape, and it is
up to you to implement the other three
classes

• Thoroughly test your classes in the main
function

• Place the resulting program on Turing. Make
sure you put both your names on it

