
1

2/23/07 CS250 Introduction to Computer Science II 1

Destructors, Get and Set, and
Default Memberwise Assignment

2/23/07 CS250 Introduction to Computer Science II 2

Destructors (7.16)

• The opposite of constructors

• Have the same name as the class, with a ~ in front
of it

• Called whenever an object is destroyed
o It is out of scope. For example, if it was a local variable

in a function and the function has completed

• A destructor has no arguments and or return value

• Only one destructor allowed!

• No need for us to explicitly declare a destructor

2/23/07 CS250 Introduction to Computer Science II 3

Example
class Test
{
 private:
 int id;
 public:
 Test(int);
 ~Test();
};

Test::Test(int i)
{
 id = i;
 cout << "constructor for " << id << " is called\n";
}
Test::~Test()
{
 cout << "destructor for " << id << " is called\n";
}

2

2/23/07 CS250 Introduction to Computer Science II 4

What is the Output?
void funct();

int main()
{
 Test cTest1(1);
 funct();

 Test cTest3(3);

 return 0;
}

void funct()
{
 Test cTest2(2);
}

2/23/07 CS250 Introduction to Computer Science II 5

Set and Get Functions

• The principle of least privilege says that we
should only provide outside members with
access to data that is absolutely necessary

• Data members should therefore be set to
private

• To modify and get access to that data,
specific member functions need to be
provided

• These are the Set and Get functions

2/23/07 CS250 Introduction to Computer Science II 6

Set and Get Functions

• The functions don’t need to be called set or
get, but it has become commonplace to do
this

• In the time class we could have the following
set functions:
o void setTime(int, int, int);

o void setHour(int);

o void setMinute(int);

o void setSecond(int);

3

2/23/07 CS250 Introduction to Computer Science II 7

Get Functions

• For the Time class we would have the
following get functions:
int getHour();

int getMinute();

int getSecond();

Time cTest4(9, 25, 30);

Time cTest5(45, 90, 72);

2/23/07 CS250 Introduction to Computer Science II 8

References to Private Data

• Although we may have declared the data
inside of a class as private, there is a way to
manipulate it directly (not use a member
function)

• It is important that we are aware of this so
that we can avoid it in the future

2/23/07 CS250 Introduction to Computer Science II 9

Example
class Test
{
 private:
 int id;
 public:
 int &setId(int);
 int getId();
};

int& Test::setId(int newId)
{
 id = (newId >= 0 && newId <=10)? newId : 0;
 return id;
}

int Test::getId()
{
 return id;
}

4

2/23/07 CS250 Introduction to Computer Science II 10

What is the Output?
int main()
{
 Test cTest1;

int &rTestRef = cTest1.setId(5);

cout << "Id is: " << cTest1.getId() << endl;

rTestRef = 34;

cout << "Id is: " << cTest1.getId() << endl;

cTest1.setId(4) = 52;

cout << "Id is: " << cTest1.getId() << endl;

 return 0;
}

2/23/07 CS250 Introduction to Computer Science II 11

Default Memberwise Assignment

• It is possible to assign an object to another
object of the same type

• This will assign every data member in the
first object to the value of the equivalent data
member in the second object

2/23/07 CS250 Introduction to Computer Science II 12

Example

Time cTest1(9, 25, 32);
Time cTest2;

cTest2 = cTest1;

cTest2.printStandard();

• Let’s illustrate this further with another
example

