
1

2/14/07 CS250 Introduction to Computer Science II 1

Classes

2/14/07 CS250 Introduction to Computer Science II 2

Review of structs

struct Person
{
 char nameStr[20];
 char ssNum[9];
 int age;
};

• What do each of the following declarations mean?
Person sPersonStruct;
Person personArry[5];
Person *pPerson = &sPersonStruct;
Person &personRef = sPersonStruct;

2/14/07 CS250 Introduction to Computer Science II 3

References in C++

• Person &personRef = personStruct;

• A reference is like a constant pointer that is
automatically dereferenced

int x = 0;
int &a = x;
cout << x << a << endl;
a++;
cout << x << a << endl;

2

2/14/07 CS250 Introduction to Computer Science II 4

Rules for References

• A reference must be initialized when it is
created

• Once a reference is initialized to an object, it
cannot be changed to refer to another object

• You cannot have NULL references

2/14/07 CS250 Introduction to Computer Science II 5

Function Arguments (7.5)

• Structure variables can be passed as
arguments to functions in the same way as
other variables
o Value

o Reference

o Pointer

• Create a function called printPerson that will
output the contents of a Person structure

2/14/07 CS250 Introduction to Computer Science II 6

Classes (7.10)

• The reserved word class is used to create
the complex structure

• Classes differ from structures in that:
o They don’t just combine simple data types into

one object

o They also describe how that data can be
manipulated

3

2/14/07 CS250 Introduction to Computer Science II 7

More on Objects

• Object-oriented programming hides the details of
objects from objects of other types

• When an object needs information from another
object or needs another object to perform a task, it
sends a message to the object requesting what it
needs

• As a result, object-oriented programs can be
written more generically than structured programs

• Usually, making changes to the object-oriented
programs is easier than changing structured
programs

2/14/07 CS250 Introduction to Computer Science II 8

In Summary

• A class is like a struct but much more

• Whereas structs can contain simple data
types, classes contain both data types and
functions that manipulate the class data

2/14/07 CS250 Introduction to Computer Science II 9

A C++ Example

• Enough of theory!

• Let’s have a look at a real example.

• We will create a class Person that will:
o Store information about person

o Store functions to manipulate this information

4

2/14/07 CS250 Introduction to Computer Science II 10

The Person Class
class Person
{
public:

int age;

int returnAge();
int returnBirthYear();

};
int main()
{

Person person;
person.age = 28;
cout << "person is: " << person.returnAge();
cout << "person was born in: "

 << person.returnBirthYear();
return 0;

}

Member Variables

Member Function prototypes

Object of class Person

2/14/07 CS250 Introduction to Computer Science II 11

The Person Class

int Person::returnAge()

{

return age;

}

int Person::returnBirthYear()

{

return 2003 - age;

}

2/14/07 CS250 Introduction to Computer Science II 12

Private & Public

• Class data members and member functions
can be either private or public

• Private data members and member
functions can only be accessed within that
class

• Public data members and member functions
can be accessed from outside of that class

5

2/14/07 CS250 Introduction to Computer Science II 13

Example Using Private & Public
class Person
{
private:

int age;
public:

void setAge(int);
int returnAge();
int returnBirthYear();

};
int main()
{

Person person;
person.setAge(28);
cout << "person is: " << person.returnAge() << endl;
cout << "person was born in: “

 << person.returnBirthYear();
return 0;

}

Because age is a private data
member, we can’t use person.age =
28 here.

Instead, we need to create a new
function in the class to set the age.

2/14/07 CS250 Introduction to Computer Science II 14

Continued

void Person::setAge(int newAge)

{

age = newAge;

}

