
1

2/12/07 CS250 Introduction to Computer Science II 1

Structs

Chapter 7

pp. 391 - 401

2/12/07 CS250 Introduction to Computer Science II 2

Arrays and Data Types

• Useful for storing a collection of data
elements of the same data type (float, int,
string).
char myName[5]; //All elements chars

float salaries[NUM_EMP]; //All elements floats

char vowels[]={‘A’,’E’,’I’,’O’,’U’};

• What about storing a collection of data
elements of different data types?

2/12/07 CS250 Introduction to Computer Science II 3

Data with Different Data Types (7.1)

• For example, what if we wanted to keep the
following information on a particular employee:
o employee id
o SS#
o number of children
o salary
o citizen

• The elements have different data types, so we
can’t conveniently use an array. Instead we will
use a struct (short for structure)

2

2/12/07 CS250 Introduction to Computer Science II 4

Structure Declaration (7.1)

To store this information:

 employee id
 SS#
 number of children
 salary
 citizen

We would begin by
defining a structure :

struct Employ

{

 int id;

 int ssnum;

int numchild;

float salary;

bool bCitizen;

};

2/12/07 CS250 Introduction to Computer Science II 5

Struct Terminology (7.1)

For this struct:

struct Employ

{

 int id;

 int ssnum;

int numchild;

float salary;

bool bCitizen;

};

• Employ is the
identifier name and a
new data type.

• The individual
components id,
ssnum, etc. are called
members.

2/12/07 CS250 Introduction to Computer Science II 6

Notes on Structures (7.1)

• A semicolon is required after the closing
brace of the structure declaration

• The structure declaration does not create a
variable

• It just tells the compiler what that structure is
made of

• The struct declaration is usually placed
above the main

3

2/12/07 CS250 Introduction to Computer Science II 7

Variable Declaration (7.1)

• As with all data types, in order to use our
new data type Employ we must allocate
storage space by declaring variables of this
data type:

 Employ sEngineer, sTech;

• This will allocate space for two variables
called sEngineer and sTech, each
containing the previously described
members id, ssnum, etc.

• Each of these variables is a separate
instance of Employ

2/12/07 CS250 Introduction to Computer Science II 8

Dot Operator (7.2)

• To access a struct member, we use the dot operator
(period between struct variable name and member name).

• In the variable sEngineer of data type Employ we can
make the assignments:
sEngineer.id = 12345;

sEngineer.ssnum = 534334343;

sEngineer.numchild = 2;

sEngineer.salary = 45443.34;

sEngineer.bCitizen = true;

2/12/07 CS250 Introduction to Computer Science II 9

Notes on Structures (7.2)

• You cannot output the entire contents of a
struct variable by simply using its name
o cout << sEngineer; // ERROR!

• Similarly, you cannot compare two struct
variables by using their name
o if(sEngineer == sTech) // ERROR!

4

2/12/07 CS250 Introduction to Computer Science II 10

Example

• Write a C++ struct data type RealNum that
will have members number, realPart,
and intPart

• Declare a variable sNumInfo of that type

• Place the value 3.14159 in the field
number

2/12/07 CS250 Introduction to Computer Science II 11

Structs as function arguments

• Structs can be passed to functions by
reference or value in the same manner that
other data types have been passed

• Generally, passing structs by reference is
preferred since passing by value requires a
local copy of the struct to be created within
the function’s variables

2/12/07 CS250 Introduction to Computer Science II 12

Example

• Write a C++ function split that accepts a
variable of type RealNum

• Assign the integer part of the number to the
member variable intPart and the real part
of the number to the member variable
realPart

• See the function prototype on the next slide

5

2/12/07 CS250 Introduction to Computer Science II 13

Example

• Function prototype:

void split(RealNum &);

• Function call:

split (sNuminfo);

• Function definition?

2/12/07 CS250 Introduction to Computer Science II 14

Initializing Structs (7.3)

• Use an initializer list
o Employ manager(12345, 534334356, 1,
76899, true);

• You can initialize only some of the members
in a struct, but members that follow a non
initialized member must also be not
initialized
o Employ manager(12345, 534334356, 1;

o Employ manager(12345,,,, true);

2/12/07 CS250 Introduction to Computer Science II 15

Initializing Structs (7.3)

• You cannot initialize structures in the
declaration

struct Employ

{

 int id = 12345;

 int ssnum = 534334356;

int numchild = 1;

float salary = 75000;

bool bCitizen = true;

};

• Why?

ERROR!

6

2/12/07 CS250 Introduction to Computer Science II 16

Using a Constructor (7.3)

• It is possible to initialize a structure during
declaration

• Use a constructor

• Constructor: A special function that can be
used to construct, or set up and initialize a
structure

• Looks like a regular function, but it’s name is
is the same name as the name of the
structure

2/12/07 CS250 Introduction to Computer Science II 17

Constructor Example (7.3)
struct Employ

{

 int id;

 int ssnum;

int numchild;

float salary;

bool bCitizen;

 Employ()

 {

 id = 0;

 ssnum = 0;

 numchild = 0;

 salary = 0;

 bCitixen = true;

 }

};

2/12/07 CS250 Introduction to Computer Science II 18

Constructors (7.3)

• Constructors can accept arguments
struct PopInfo

{

 string name;

 long population;

 PopInfo(string n, long p)

 {

 name = n;

 population = p;

 }

};

7

2/12/07 CS250 Introduction to Computer Science II 19

Constructors (7.3)

• This allows as to initialize structure variables
as they are defined

PopInfo forestGrove(“Forest Grove”, 19000);

PopInfo portland(“Portland”, 556000);

2/12/07 CS250 Introduction to Computer Science II 20

Constructors (7.3)

• But, what if we didn’t want to initialize the
struct variable
o PopInfo city;

• Adding empty parenthesis is incorrect:
o PopInfo city(); // ERROR!

