
1

3/14/05 CS250 Introduction to Computer Science II 1

static Class Members and
Operator Overloading

3/14/05 CS250 Introduction to Computer Science II 2

Object Details

• What does memory look like after creating
multiple objects of a class?

• For example:
o Time t(3, 45, 00);

o Time t2(5, 29);

o Time t3(14);

o Time t4;

o Time *pTime = new Time();

3/14/05 CS250 Introduction to Computer Science II 3

static Class Members

• Each object gets it’s own copy of the data
members

• What if we wanted a data member to be
shared between all objects
o Each object sees the same value for the data

member

o Each object can modify that data member, and
the other objects will see the change

• Data members of this type are called static

3/14/05 CS250 Introduction to Computer Science II 4

static Class Member

• static members represent class-wide
information and are not specific to one
object

• There is only one copy of the member and it
is shared between all objects

• Why would we ever need or want a static
class member? Can you think of an
example.

3/14/05 CS250 Introduction to Computer Science II 5

static Class Members

• They are not global variables

• The static data member could be declared
public, private, or protected

• static data members must be initialized once

3/14/05 CS250 Introduction to Computer Science II 6

Example
#ifndef EMPLOYEE2_H
#define EMPLOYEE2_H
class Employee
{
public:
 Employee(const char *, const char *);
 ~Employee();
 const char *getFirstName() const;
 const char *getLastName() const;
 static int getCount();
private:
 char *firstName;
 char *lastName;
 static int count;
};
#endif

2

3/14/05 CS250 Introduction to Computer Science II 7

Information Hiding and ADTs

• ADT: Abstract Data Type

• The IntegerSet class we looked at last week
is a prime example of an ADT
o Hide the implementation from the client

 I.e. Clients don’t need to know that a set is
implemented as an array, where the indexes of the
array represent the elements in the set

 All the clients want to do is use the ADT for their
programs

• How could we change the implementation
of the IntegerSet ADT but still provide the
same functionality to the client?

3/14/05 CS250 Introduction to Computer Science II 8

ADT

• An ADT captures two notions:
o Data representation

o Operations allowed on the data

• Examples of ADTs
o Array ADT

o String ADT

3/14/05 CS250 Introduction to Computer Science II 9

Operator Overloading

• A couple of weeks ago we created a class
for rational numbers

• An example of how a client would use that
class is:
Rational a(3, 4);
Rational b(2, 5);
Rational c, d;
c = a.multiplication(b);
d = a.addition(b);

• It would be much easier if we could instead
write
c = a * b;
d = a + b;

3/14/05 CS250 Introduction to Computer Science II 10

Operator Overloading

• We defined a print function for the
IntegerSet class to output the contents of a
set
IntegerSet setA(10);
setA.print();

• Wouldn’t it be more efficient and more
consistent with C++ if we could write
cout << setA;

3/14/05 CS250 Introduction to Computer Science II 11

The How of Operator Overloading

• Write a function definition for the operator,
but the function name becomes operator
followed by the symbol
o operator<<

o operator+

o operator==

• Two operators are used without overloading
o & the address operator

o = memberwise assignment

3/14/05 CS250 Introduction to Computer Science II 12

Operator Overloading

• Operator overloading can be achieved in
one of two ways
o A member function of the class

o A friend function of the class

• Using operator overloading through
member functions has the restriction that
the object of the class must always be to
the left of the operator
o Not useful for the insertion operator <<

3

3/14/05 CS250 Introduction to Computer Science II 13

operator<<

• << must be overloaded using friend
functions

• The return value of operator<< is an
ostream&

• The arguments will be the output stream
and an object of the class

3/14/05 CS250 Introduction to Computer Science II 14

Example

class PhoneNumber

{

 friend ostream &operator<<(ostream&, const
PhoneNumber &);

 friend istream &operator>>(istream&, PhoneNumber &
);

private:

 char areaCode[4]; // 3-digit area code and null

 char exchange[4]; // 3-digit exchange and null

 char line[5]; // 4-digit line and null

}; // end class PhoneNumber

3/14/05 CS250 Introduction to Computer Science II 15

Definition

ostream &operator<<(ostream &output, const
PhoneNumber &num)

{

 output << "(" << num.areaCode << ") "

 << num.exchange << "-" << num.line;

 return output; // enables cout << a <<
b << c;

} // end function operator<<

3/14/05 CS250 Introduction to Computer Science II 16

Driver

int main()

{

 PhoneNumber phone;

 cout << "The phone number is: ";

 cout << phone << endl;

 return 0;

} // end main

3/14/05 CS250 Introduction to Computer Science II 17

Your Turn
class Rational
{
public:
 Rational(int = 0, int = 1);
 Rational addition(const Rational &);
 Rational subtraction(const Rational &);
 Rational multiplication(const Rational &);
 Rational division(const Rational &);
 void printRational ();
private:
 int numerator;
 int denominator;
 void reduction();
};

• Replace the printRational() function with
operator<<

3/14/05 CS250 Introduction to Computer Science II 18

Summary

• Today we covered
o static members of a class

o Operator overloading

• Completed pages 497 - 505, 547 - 555

