
1

3/14/05 CS250 Introduction to Computer Science II 1

static Class Members and
Operator Overloading

3/14/05 CS250 Introduction to Computer Science II 2

Object Details

• What does memory look like after creating
multiple objects of a class?

• For example:
o Time t(3, 45, 00);

o Time t2(5, 29);

o Time t3(14);

o Time t4;

o Time *pTime = new Time();

3/14/05 CS250 Introduction to Computer Science II 3

static Class Members

• Each object gets it’s own copy of the data
members

• What if we wanted a data member to be
shared between all objects
o Each object sees the same value for the data

member

o Each object can modify that data member, and
the other objects will see the change

• Data members of this type are called static

3/14/05 CS250 Introduction to Computer Science II 4

static Class Member

• static members represent class-wide
information and are not specific to one
object

• There is only one copy of the member and it
is shared between all objects

• Why would we ever need or want a static
class member? Can you think of an
example.

3/14/05 CS250 Introduction to Computer Science II 5

static Class Members

• They are not global variables

• The static data member could be declared
public, private, or protected

• static data members must be initialized once

3/14/05 CS250 Introduction to Computer Science II 6

Example
#ifndef EMPLOYEE2_H
#define EMPLOYEE2_H
class Employee
{
public:
 Employee(const char *, const char *);
 ~Employee();
 const char *getFirstName() const;
 const char *getLastName() const;
 static int getCount();
private:
 char *firstName;
 char *lastName;
 static int count;
};
#endif

2

3/14/05 CS250 Introduction to Computer Science II 7

Information Hiding and ADTs

• ADT: Abstract Data Type

• The IntegerSet class we looked at last week
is a prime example of an ADT
o Hide the implementation from the client

 I.e. Clients don’t need to know that a set is
implemented as an array, where the indexes of the
array represent the elements in the set

 All the clients want to do is use the ADT for their
programs

• How could we change the implementation
of the IntegerSet ADT but still provide the
same functionality to the client?

3/14/05 CS250 Introduction to Computer Science II 8

ADT

• An ADT captures two notions:
o Data representation

o Operations allowed on the data

• Examples of ADTs
o Array ADT

o String ADT

3/14/05 CS250 Introduction to Computer Science II 9

Operator Overloading

• A couple of weeks ago we created a class
for rational numbers

• An example of how a client would use that
class is:
Rational a(3, 4);
Rational b(2, 5);
Rational c, d;
c = a.multiplication(b);
d = a.addition(b);

• It would be much easier if we could instead
write
c = a * b;
d = a + b;

3/14/05 CS250 Introduction to Computer Science II 10

Operator Overloading

• We defined a print function for the
IntegerSet class to output the contents of a
set
IntegerSet setA(10);
setA.print();

• Wouldn’t it be more efficient and more
consistent with C++ if we could write
cout << setA;

3/14/05 CS250 Introduction to Computer Science II 11

The How of Operator Overloading

• Write a function definition for the operator,
but the function name becomes operator
followed by the symbol
o operator<<

o operator+

o operator==

• Two operators are used without overloading
o & the address operator

o = memberwise assignment

3/14/05 CS250 Introduction to Computer Science II 12

Operator Overloading

• Operator overloading can be achieved in
one of two ways
o A member function of the class

o A friend function of the class

• Using operator overloading through
member functions has the restriction that
the object of the class must always be to
the left of the operator
o Not useful for the insertion operator <<

3

3/14/05 CS250 Introduction to Computer Science II 13

operator<<

• << must be overloaded using friend
functions

• The return value of operator<< is an
ostream&

• The arguments will be the output stream
and an object of the class

3/14/05 CS250 Introduction to Computer Science II 14

Example

class PhoneNumber

{

 friend ostream &operator<<(ostream&, const
PhoneNumber &);

 friend istream &operator>>(istream&, PhoneNumber &
);

private:

 char areaCode[4]; // 3-digit area code and null

 char exchange[4]; // 3-digit exchange and null

 char line[5]; // 4-digit line and null

}; // end class PhoneNumber

3/14/05 CS250 Introduction to Computer Science II 15

Definition

ostream &operator<<(ostream &output, const
PhoneNumber &num)

{

 output << "(" << num.areaCode << ") "

 << num.exchange << "-" << num.line;

 return output; // enables cout << a <<
b << c;

} // end function operator<<

3/14/05 CS250 Introduction to Computer Science II 16

Driver

int main()

{

 PhoneNumber phone;

 cout << "The phone number is: ";

 cout << phone << endl;

 return 0;

} // end main

3/14/05 CS250 Introduction to Computer Science II 17

Your Turn
class Rational
{
public:
 Rational(int = 0, int = 1);
 Rational addition(const Rational &);
 Rational subtraction(const Rational &);
 Rational multiplication(const Rational &);
 Rational division(const Rational &);
 void printRational ();
private:
 int numerator;
 int denominator;
 void reduction();
};

• Replace the printRational() function with
operator<<

3/14/05 CS250 Introduction to Computer Science II 18

Summary

• Today we covered
o static members of a class

o Operator overloading

• Completed pages 497 - 505, 547 - 555

