
1

2/2/05 CS250 Introduction to Computer Science II 1

Pointers

2/2/05 CS250 Introduction to Computer Science II 2

Pointers

• Pointers are one of the most powerful
features of C++

• Pointers give programmers more control
over the computer’s memory

• A pointer is the memory address of a
variable

• How are variables declared in C++?

2/2/05 CS250 Introduction to Computer Science II 3

Pointer Declarations

• The memory address of a variable can be
stored in another variable called a pointer

• Pointers are declared using the * operator

• The following declares a pointer to an
integer
o int *pX;

• In the following statement, x is an integer
and pX is a pointer to an integer
o int *pX, x;

2/2/05 CS250 Introduction to Computer Science II 4

Pointer Declarations

• How would you create two pointers to doubles?

• Notes:
o When naming pointer variables, the book uses the

convention of having ptr at the end of the name (eg.
countPtr, xPtr)

o Using our coding standards, we will use the convention
that all pointer variables start with a small p (eg. pCount,
pX)

• Coding standards are available at
http://zeus.cs.pacificu.edu/shereen/CodingStandar
ds.html

2/2/05 CS250 Introduction to Computer Science II 5

Address Operator

• How do we assign to a pointer the address
of a variable?

• Use the address operator (&)

• & returns the memory address of it’s
operand

• Example:
o pX = &x;

• Where have we used & before?

2/2/05 CS250 Introduction to Computer Science II 6

Address Operator

• Operand of the address operator must be
an lvalue

• An lvalue is something to which a value can
be assigned

• Address operator cannot be applied to
constants
o int const NUM = 98;

o pX = &NUM; // ERROR

o pX = &8; // ERROR

2

2/2/05 CS250 Introduction to Computer Science II 7

Pointer Operations

int x, *pX;

x = 8; // set x to a value of 8

pX = &x; // set the pointer variable to point

 // to the address of x

cout << "x is: " << x << endl;

cout << "Address of x is: " << pX << endl;

cout << "Address of x is: " << &x << endl;

2/2/05 CS250 Introduction to Computer Science II 8

Indirection Operator

• How can we use the pointer variable to
modify the value in the variable?
o i.e. how to use pX to change the value of x

• Answer: use the indirection operator (*)

• The * operator returns a synonym to
whatever the pointer variable is pointing to

• Using the example on the previous slide
o cout << "pX is pointing to: " <<
*pX << endl;

2/2/05 CS250 Introduction to Computer Science II 9

Indirection Operator

• Using * as we did in the previous example
is called dereferencing the pointer

• Using our example, how can we
dereference pX so that it changes the value
of x from 8 to 10?

• How can we change the value of x to a
value entered by the user using the
indirection operator?

2/2/05 CS250 Introduction to Computer Science II 10

Common Pointer Mistakes

• What is wrong with the following?

int x, *pX;

x = 8;

*pX = 2;

pX = 9;

*x = 4;

2/2/05 CS250 Introduction to Computer Science II 11

Pointers and Functions

• What are the two ways of passing
arguments into functions?

• Write two functions square1 and square2
that will calculate the square of an integer.
o square1 should accept the argument passed

by value,
o square2 should accept the argument passed

by reference.

2/2/05 CS250 Introduction to Computer Science II 12

Pointers and Functions

• There is a third way of passing arguments
into functions

• It’s called passing by reference without
using reference arguments

• The address of the argument is passed
instead of the argument itself

3

2/2/05 CS250 Introduction to Computer Science II 13

Passing by reference

void square3 (int *pNum)

{

 *pNum *= *pNum;

}

• What would a function call to the above
function look like?

2/2/05 CS250 Introduction to Computer Science II 14

Function Call

intval = 5;

square3(&intval);

cout << intval << endl;

2/2/05 CS250 Introduction to Computer Science II 15

Summary

• Today I introduced
o The concept of pointer variables

o The address operator

o The indirection operator

• We have covered:
o P. 320 - 329

