More Arrays

11/15/04

CS150 Introduction to Computer Science 1

Last Time

- We
 - o Learnt how to pass arrays to functions
- Today we will
 - o Start talking about sorting arrays

11/15/04

CS150 Introduction to Computer Science 1

Histogram

 Write a program that will output the contents of the array in the form of a histogram

Element	Value	Histogram
0	7	*****
1	12	*****
2	3	***
3	5	****

CS150 Introduction to Computer Science 1

Random Number Generation

- The library <cstdlib> contains a function for generating random numbers
- For example, the statement used to produce integers in the range 0 5 is
 - o int x = rand() % 6;
- To simulate the role of a dice we would use the statement
 - o int x = 1 + rand() % 6

11/15/04 CS150 Introduction to Computer Science 1

Seeded Random Numbers

- Function rand generates pseudo-random numbers
- The function produces the same numbers every time the program runs
- Use the function srand to produce true random numbers
- srand needs an integer argument to seed the rand function to produce a different sequence of numbers for each program execution

11/15/04

11/15/04

CS150 Introduction to Computer Science 1

What Does the Program Do?

```
int main()
{
  unsigned seed;
  cout << "Enter seed" << endl;
  cin >> seed;
  srand(seed);
  for( int i=1; i<=10; i++ )
    cout << setw(10) << (1+rand()%6);
  return 0;
}
int main()

CS150 Introduction to Computer Science 1 6</pre>
```

Randomizing

- Is there a way of finding a true random number without asking the user for a seed?
- Best thing is to use the calendar time. This uses the date and the time to produce a unique unsigned int
- Need to include <ctime> and the function time(0)

```
o srand( time( 0 ) );
```

11/15/04

CS150 Introduction to Computer Science 1

Random Number Generation

 Write a program that will simulate the roll of a dice 6000 times and show the frequency in which each side appeared

Face	Frequency		
1	1003		
2	1017		
3	983		
4	994		
5	1004		
6	999		
11/15/04	CS150 Introdu	ction to Computer Science 1	8

Sorting Arrays

- Bubble sort
- Not suitable for large arrays
- Smaller values gradually bubble their way upward to the top of the array

11/15/04

CS150 Introduction to Computer Science 1

Bubble Sort

```
for( int pass=0; pass < size - 1; pass ++ )
  for( int j=0; j < size - 1; j++ )
   if( a[j] > a[j+1] )
   {
     hold = a[j];
     a[j] = a[j+1];
     a[j+1] = hold;
   }
```

Summary

- In today's lecture we covered
 - o Random numbers
 - o Sorting arrays (bubble sort)
- Readings
 - o P. 276 p. 278: Bubble sort
 - o P. 262 p. 264: Histograms
 - o P. 182 p. 188: Random number generation

11/15/04

CS150 Introduction to Computer Science 1