

Last Time

09/27/04

09/27/04

09/27/04

Problems

09/27/04

09/27/04

- Write a program that reads in the salary of 5 employees and calculates the gross pay
 - We know, before the program runs, how many times the loop will iterate
 - o Counter-controlled repetition
- Write a program that reads an undetermined number of student grades and calculates the average student grade
 - We don't know, before the program runs, how many times the loop will iterate

CS150 Introduction to Computer Science 1

o Sentinel-controlled repetition

Counter-Controlled Repetition

• We know, before we run the program, the number of repetitions that the loop will make

CS150 Introduction to Computer Science 1

- Also called definite repetition
- Write a program that reads in the salary of 5 employees and calculates the gross pay

CS150 Introduction to Computer Science 1

Sentinel-Controlled Repetition

- We have no idea how many times the loop will need to iterate
- Write a program that reads an undetermined number of student grades and calculates the average student grade
- How will we know when we've read all employee's salaries?
 - o I.e. How will we know when to stop looping?

CS150 Introduction to Computer Science 1

Sentinel-Controlled Repetition

- Use a sentinel value
 - User types employee salaries until all legitimate salaries have been entered
 - User then types in sentinel value to indicate that there are no more legitimate salaries
- Also called indefinite repetition
- Sentinel value must be chosen so that it cannot b confused with legitimate inputs
 - o -1 is a good value to use in most cases

CS150 Introduction to Computer Science 1

1

Problem

09/27/04

 Write a program that reads an undetermined number of student grades and calculates the average student grade

CS150 Introduction to Computer Science 1

Type Casting

09/27/04

- To produce a floating point calculation with integer values, we must convert one of the operands to a floating point
- static_cast< double >(total)
 - Stores a temporary version of total as a double
 - o If total was 310, it will be stored as 310.0
 - o This temporary value will be used in calculations

CS150 Introduction to Computer Science 1

Called an explicit conversion

Type Casting

09/27/04

- C++ can only evaluate expressions where both operands are of the same type
- static_cast< double >(total) / gradeCounter
 o Is trying to divide a double by an int
 double / int
- Compiler performs a promotion (implicit conversion) on the int to make it a double
 - o If gradeCounter was 4, will now be 4.0

CS150 Introduction to Computer Science 1

Type Casting

- average = static_cast< double >(total) / gradeCounter;
- If total was originally 310 and gradeCounter was 4, compiler will
 - o 310.0 / 4.0

09/27/04

- o Results in 77.5
- If average is a double, then 77.5 is stored
- If average is an int then the fractional part will be truncated

CS150 Introduction to Computer Science 1

Operator Precedence & Associativity		
()	L->R	Parentheses
<pre>static_cast<type>()</type></pre>	L->R	Unary
!, +, -	R->L	Negation, Unary +, -
*,/,%	L->R	Mult, div, mod
+, -	L->R	Add, Subtract
«<, >>	L->R	Insertion/extraction
<, <=, >, >=	L->R	Relational
==, !=	L->R	Equality
& &	L->R	And
11	L->R	Or
=	R->L	Assignment
09/27/04 CS150 Introduction to Computer Science 1 15		

Formatting C++ Output

- So far, the only formatting that we have done to our output has been adding spaces and blank lines
- We can also format floating point numbers so that they display a specific number of digits in the fractional part

CS150 Introduction to Computer Science 1

 You need to include the preprocessor directive <iomanip>

09/27/04

Formatting C++ Output

09/27/04

09/27/04

```
int binary = 1010;
int decimal = 10;
cout << setw(7) << "decimal";
cout << setw(10) << "binary";
cout << setw(7) << decimal;
cout << setw(10) << binary;</pre>
```

A Note on Stepwise Refinement

- P. 87 89 in your book describe the process of top-down stepwise refinement
- This is a really useful process for solving a problem
- It describes how to start from the top-most description of the problem and refining it until you have a detailed description of the process

CS150 Introduction to Computer Science 1

• Be sure to read about it!

09/27/04

Top-Down, Stepwise Refinement

CS150 Introduction to Computer Science 1

- There is a description of how to solve a complete problem using top-down, stepwise refinement on p. 94 - 98
- The solution to this problem requires that an if selection structure be embedded within a while repetition structure

CS150 Introduction to Computer Science 1

 You used a similar process when you solved the 3n+1 problem in the lab

Summary In today's lecture we covered Counter and sentinel-controlled repetitions Type casting Formatting output Top-down, stepwise refinement Readings P. 83 - 94 counter and sentinel loops P. 92 type casting P. 93, p. 113 formatting output P. 94 - 98 top-down, stepwise refinement