
11/28/11

1

1

Structures

Chapter 11

2

structs

•  Arrays are useful for storing a collection of data
elements of the same data type

•  What about storing a collection of data elements of
different data types?

•  Related information can be placed in a structure,
which has a general format as follows:

struct StructName

{

 // variable declarations

};

3

struct Definition

•  structs store a collection of data elements of
different data types

•  For example, what if we wanted to keep the
following information on a particular employee:
o  employee id
o  SS#
o  last name
o  salary
o  citizen

•  The elements have different data types, so
we can’t conveniently use an array. Instead
we will use a struct

11/28/11

2

4

Structure Declaration

To store this information:

  employee id
  SS#
  last name
  salary
  citizen

We would begin by defining
a structure :

struct Employee

{

 int id;

 int socialSecurityNumber;

 string lastName;

 double salary;

 bool bIsCitizen;

};

5

Struct Terminology

For this struct:

struct Employ

{

 int id;

 int socialSecurityNumber;

 string lastName;

 double salary;

 bool bIsCitizen;

};

•  Employee is the
identifier name and a
new data type.

•  The individual
components id, etc.
are called members.

6

Notes on structs

•  A semicolon is required after the closing
brace of the struct declaration

•  The struct declaration does not create a
variable

•  It just tells the compiler what that struct is
made of

•  The struct declaration is usually placed
above the main

11/28/11

3

7

Variable Declaration

•  As with all data types, in order to use our
new data type Employee we must allocate
storage space by declaring variables of this
data type:

 Employee sEngineer, sTech;

•  This will allocate space for two variables
called sEngineer and sTech, each
containing the previously described
members id, socialSecurityNumber,
etc. Each of these variables is a separate
instance of Employee

8

Dot Operator

•  To access a struct member, we use the dot operator
(period between struct variable name and member name).

•  In the variable sEngineer of data type Employee we can
make the assignments:
sEngineer.id = 12345;

sEngineer.socialSecurityNumber = 534334343;

sEngineer.lastName = “Doe”;

sEngineer.salary = 45443.34;

sEngineer.bIsCitizen = true;

9

Notes on Structures

•  You cannot output the entire contents of a
struct variable by simply using its name
o  cout << sEngineer; // ERROR!

•  Similarly, you cannot compare two struct
variables by using their name
o  if(sEngineer == sTech) // ERROR!

11/28/11

4

10

Payroll Problem

•  Consider the following structure:
struct PayRoll

{

 int employeeNumber;

 string name;

 double hoursWorked,

 payRate,

 grossPay;

};

11

Payroll Problem

•  Declare a PayRoll variable sDeptHead
and assign the employeeNumber, name,
and payRate with the values 123, Joe
Smith, and 10.00.

12

Passing structs to Functions

•  structs can be passed to functions by
reference or value in the same manner that
other data types have been passed

•  Generally, passing structs by reference is
preferred since passing by value requires a
local copy of the struct to be created within
the function’s variables

11/28/11

5

13

Time Problem

•  Consider the following struct:
struct Time

{

 int hours,

 minutes,

 seconds;

};
•  Write a function (getTime) that will ask the user to enter in a

military time in the form hh:mm:ss and place hh into hours, mm
into minutes, and ss into seconds. Error check to make sure that
hh is in the range of 0-23, mm is in the range of 0-59, and ss is in
the range of 0-59.

•  Create a variable of type Time in main and call the function
getTime.

14

Displaying/Comparing structs

•  Which of the following C++ statements are legal
given variables sTime1 and sTime2 of type Time
exist?

a)  cout << sTime1 << sTime2;
b)  if(sTime1 == sTime2)
 {

 cout << "times are equal";

 }

c)  cout << sTime1.hours;
d)  cin >> sTime1;
e)  cin >> sTime1.hours;

15

Initializing structs

•  Use an initializer list
o  Employee sManager(12345, 534334356,
1, 76899, true);

•  You can also initialize only some of the
members in a struct:
o  Employee sManager(12345, 534334356,
1);

11/28/11

6

16

Initializing Structs

•  You cannot initialize structs in the
declaration

struct Employee

{

 int id = 12345;

 int socialSecurityNumber = 534334356;

 int numChildren = 1;

 float salary = 75000;

 bool bIsCitizen = true;

};
•  Why?

ERROR!

17

Arrays of structs

•  It is possible to declare an array of structs.
•  Assume the following structure exists:
struct BookInfo
{
 string title;
 string author;
 string publisher;
 double price;
};

•  You define an array of BookInfo as follows:
BookInfo bookList[20];

18

Arrays of structs

•  To access a specific member in the array,
you would use the index of the array and the
dot operator.

•  For example:
bookList[0].title = “Jane Eyre”;

bookList[2].author = “John Grisham”;

CS250 Introduction to Computer Science II

11/28/11

7

19

Program

•  A datafile called athletes.txt exists which contains an
unknown amount of information where each line of
the file contains an id, age, and weight of a specific
athlete. The last line contains the sentinals 9999 0 0

•  The program will contain two functions:
o  void readAthleteData - This function reads in up to

100 lines of data into an array of structs and returns the
number of athletes in the datafile.

o  int whatAge - This function returns the age of the
athlete with a given idNumber.

•  Declare a struct for the athlete’s data
•  Create an array of structs to hold all athlete’s data
•  Write each function described above

CS250 Introduction to Computer Science II

