CS 150 Lab 6 Loops Loops Loops

You are to solve ANY TWO of the following four labs. The problems are listed from easy to hard. If you want more of a challenge, pick later labs. If you are struggling with loops a little, pick the earlier labs. If the solution calls for a count controlled loop, make sure you use a for loop in the solution.

- Be sure your output looks exactly like the specified output.
- Be sure to submit the completed project to CS150-02 Lab when you are done.
- Be sure to use the program skeleton and add comments to your code!

Show the instructor or TA your solution to each problem before submitting.

Lab 6.1

The conversion of kilometers per hour (KPH) to miles per hour (MPH) is given by the formula $\mathrm{mph}=\mathrm{kph} * 0.6214$. Write a C++ program in a project named 6_1_Speed that produces a table of values based on input given by the user. The speeds are to be shown in increments of 10 kph . As this is a count controlled loop, the main loop must be a for loop.

```
**********************************
* Speed Table *
Enter starting KPH value: 60
Enter ending KPH value: 100
```

KPH	MPH
---	---
60.0	37.3
70.0	43.5

Lab 6.2

The first few fibonacci numbers are 11235 ... After the first two fibonacci numbers, each subsequent number is found by adding the previous two numbers. Write a C++ program in a project 6_2_Fibonacci that prints a table of fibonacci numbers as follows:

```
**********************************
* Fibonnaci Table *
**********************************
Enter number of fibonacci's: 5
```

 Fibonnaci Numbers

Lab 6.3

An approximation of pi is:
$\pi=4 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=4\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+-\cdots\right)=\frac{4}{1+\frac{1^{2}}{2+\frac{3^{2}}{2+\frac{5^{2}}{2+\ddots}}}}$
http://en.wikipedia.org/wiki/Approximations of \%CF\%80
Write a C++ program in a project 6_3_Pi that asks the user to input the number of terms to use in the approximation of pi. Using the specified number of terms, output the approximation of pi.

```
**********************************
* Pi Approximation *
**********************************
Enter number of terms in pi approximation: 1000
Approximation of pi is: x.xxxxx
```


Lab 6.4

Write a C++ program in a project 6_4_Digits that asks the user to input an integer number. You are to output the number of digits in the integer entered by the user.

```
**********************************
* Fibonnaci Table *
**********************************
Enter a positive integer: 5417
Number of digits in 5417 is 4
```

Note1: The projects you select are to be added to your Labs solution PUNetIDLabs.

Once your projects are complete, place your solution PUNetIDLabs into the CS150-02 Drop folder on Turing. Your solution is to have all previous projects completely working and correct.

