
CS150 Assignment 5 Checking Account
Date assigned: Monday, October 18, 2010
Design Documents Due: Friday, October 22, 2010, 5pm (5 points)
Date due: Friday, October 29, 2010, 1pm (45 points)
Total points: 50

Problem

You are to write a program that will process a collection of checking account transactions for multiple
customers.

The input will consist of a series of lines of data, the first line containing the account number and the
previous balance. Each subsequent line will contain: (a) the account number, (b) a date in the form
101810(mm/dd/yy), (c) one of two characters (D - deposit, or W - withdrawal) and (d) an amount of
money to be deposited or withdrawn. A deposit transaction is identified by the character D followed by
the amount of the deposit. A withdrawal transaction is identified by the character W followed by the
amount of the withdrawal. Processing of an account continues until the marker value of 999999 is
encountered.

 The summary statistics for each customer will consist of:

• number of withdrawals

• total sum of all the withdrawals

• number of deposits

• total sum of all the deposits

• lowest balance during month

• highest balance during month

Use the following format for each account output:

 Account: #####

Previous Balance: $####.##

Date Withdrawals($) Deposits($) Balance($)
######.## ######.##
######.## ######.##
######.## ######.##
######.## ######.##

(##) Withdrawals Totaled $######.##
(##) Deposits Totaled $######.##

Lowest Balance during month was $######.##
Highest Balance during month was $######.##

Here is a sample datafile you can use to run your program.

12345 500.00
12345 102310 D 100.00
12345 100210 W 50.00
99999

Notes

1. Minimally, a data file must consist of at least the first line (an account # and beginning balance)
and the last line (a marker value of 99999).

2. I will not test your program with data that makes the balance go negative so do not worry about
this case. Make sure your program can handle all other cases.

3. Assume that the output for each account will not run over a screen's worth of space.
4. Read your account data from a file called bankdata.txt.

To complete this assignment you must
1. Create a new C++ project in Visual Studio. Name your project 05Checkingxxxxxxxx, where

xxxxxxxx must be replaced by your PUNetID. As an example, my project would be called
"05Checkingkhoj0332". It is vital that you name your project correctly!

2. Type the solution (fully documented/commented) to the problem into your project.
3. Remember to enter in your name as the author of the program.
4. Make sure that your program compiles and runs correctly. If you get any errors, double check

that you typed everything correctly. Be aware that C++ is case-sensitive. Also, there must not
be any warnings when compiling your program.

5. Once you are sure that the program works correctly, it is time to submit your program. You do this by
logging on to Turing and placing your complete project folder in the CS150-01 Drop folder. Make sure
that you copy your program folder and don't move the folder. If you move the folder, then you will not
have your own copy!

Submit an electronic copy of your design document
Before you start you need to think about the data in your program and the calculations and loops you
will need to perform. Answer the following questions in a new GoogleDoc
(CS150_05ProgramDesignPUNetID) and share the document with the instructor
(ShereenKhoja@gmail.com). Be sure to answer the questions in complete sentences where appropriate.
This design document is due on Friday at 5pm.
Design Questions:

1. List each variable declaration necessary to store the data and information in your program. Be
sure to name your variables clearly so readers of your code will have no problem understanding
their purpose. Pay very close attention to the data types for each variable.

2. Briefly describe the calculations you will need to perform in your program. Be sure to explain
which variables from 1. will be used in each calculation.

3. For each loop used in your program, discuss what will happen in the loop and what data and
conditions will be used by the program to stop the loop.

4. Write a small test case (data file) that will test some portion of your program that is not tested

by the sample data file given above. Describe, in English sentences, which portion of your code
will be tested by this new test case.

Notes
1. You must follow the coding standards.

2. You must use constants when possible.

3. Your program will be graded on efficiency. In other words, you will be marked down for

repeating code statements unnecessarily.

4. Your output must look exactly like the sample given.

5. If this program sounds difficult, it's not that bad if you get an EARLY start. Make sure you
understand all of the pieces before beginning to code your solution. Code your solution a piece
at a time not all at once. It makes for much smoother debugging.

Remember, this is an individual assignment. Refer to the syllabus for assignment policies

Extra Credit

If you would like more of a challenge and the opportunity of earning an extra 5 points on this
assignment, then write your program so that it will handle multiple accounts. The input file will contain
the data for multiple accounts. After the data is listed for one account, then it will be followed by the
data for the next account and so on until the marker 999999. An example file is:

12345 500.00
12345 102310 D 100.00
12345 100210 W 50.00
67890 1000.00
67890 101403 D 600.00
67890 102404 D 120.21
67890 100905 D 200.00
67890 100106 D 240.00
99999

Start the output for each account on a new screen. Print all information for an account, including the
summary statistics, on a separate screen and pause the output for each account until the user hits a key.
Remember, the commands you will need are:

system(“cls”); // clears the screen.
system(“pause”); // pauses the program until
 // the user hits a key AND
 // Prints “Press any key to continue . . .”
 // on the screen
 // No extra include libraries are needed!

