
1

11/30/05 CS150 Introduction to Computer Science 1 1

Structs

11/30/05 CS150 Introduction to Computer Science 1 2

Last Time

• We finished arrays

• Today we will
o Look at a new way of storing data called structs

(short for structures)

11/30/05 CS150 Introduction to Computer Science 1 3

Arrays and Data Types

• Useful for storing a collection of data
elements of the same data type (float, int,
string).
char myName[5]; //All elements chars

float salaries[NUM_EMP]; //All elements floats

char vowels[]={‘A’,’E’,’I’,’O’,’U’};

• What about storing a collection of data
elements of different data types?

11/30/05 CS150 Introduction to Computer Science 1 4

Data with Different Data Types

• For example, what if we wanted to keep the
following information on a particular employee:
o employee id
o SS#
o number of children
o salary
o citizen

• The elements have different data types, so we
can’t conveniently use an array. Instead we will
use a struct (short for structure)

11/30/05 CS150 Introduction to Computer Science 1 5

Structure Definition

To store this
information:

 employee id
 SS#
 number of children
 salary
 citizen

We would begin by
defining a structure :

struct employ

{

 int id

 int ssnum;

int numchild;

float salary;

bool citizen;

};

11/30/05 CS150 Introduction to Computer Science 1 6

Struct Terminology

For this struct:

struct employ

{

 int id

 int ssnum;

int numchild;

float salary;

bool citizen;

};

• employ is the
identifier name and a
NEW data type.

• The individual
components id,
ssnum, etc. are called
members.

2

11/30/05 CS150 Introduction to Computer Science 1 7

Struct Declaration

• As with all data types, in order to use our
new data type employ we must allocate
storage space by declaring variables of this
data type:

 employ engineer, tech;

• This will allocate space for two variables
called engineer and tech with the
previously described members id, ssnum,
etc

11/30/05 CS150 Introduction to Computer Science 1 8

Member Access Operator

• To access a struct member, we use the member access
operator (period between struct variable name and
member name).

• In the variable engineer of data type employ we can
make the assignments:
engineer.id = 12345;

engineer.ssnum = 534334343;

engineer.numchild = 2;

engineer.salary = 45443.34;

engineer.citizen = true;

• How do we access the data in arrays?

11/30/05 CS150 Introduction to Computer Science 1 9

Example One

• 22.1: Write a C++ struct data type realnum
that will have members number,
realpart, and intpart

• 22.2: Declare a variable numinfo of that
type

• 22.3: Place the value 3.14159 in the field
number

11/30/05 CS150 Introduction to Computer Science 1 10

Structs as function arguments

• Structs can be passed to functions by
reference or value in the same manner that
other data types have been passed

• Generally, passing structs by reference is
preferred since passing by value requires a
local copy of the struct to be created within
the function’s variables

11/30/05 CS150 Introduction to Computer Science 1 11

Example Two

• 22.4: Write a C++ function split that
accepts a variable of type realnum

• 22.5: Assign the integer part of the number
to the member variable intpart and the
real part of the number to the member
variable realpart

• See the function prototype on the next slide

11/30/05 CS150 Introduction to Computer Science 1 12

Example Two Solution

• Function prototype:

void split(realnum &);

• Function call:

split (numinfo);

• Function definition: You write

3

11/30/05 CS150 Introduction to Computer Science 1 13

Example Three

Consider the following
struct data type:

struct info

{

 int num;

int divisors[10];

int howmany;

};

22.6: Write a C++
function compute that
accepts a variable of
type info and returns
all the divisors greater
than 1 of the variable
num in the array
divisors and the
number of divisors in
the variable howmany

11/30/05 CS150 Introduction to Computer Science 1 14

Summary

• In today’s lecture we covered
o Structures

