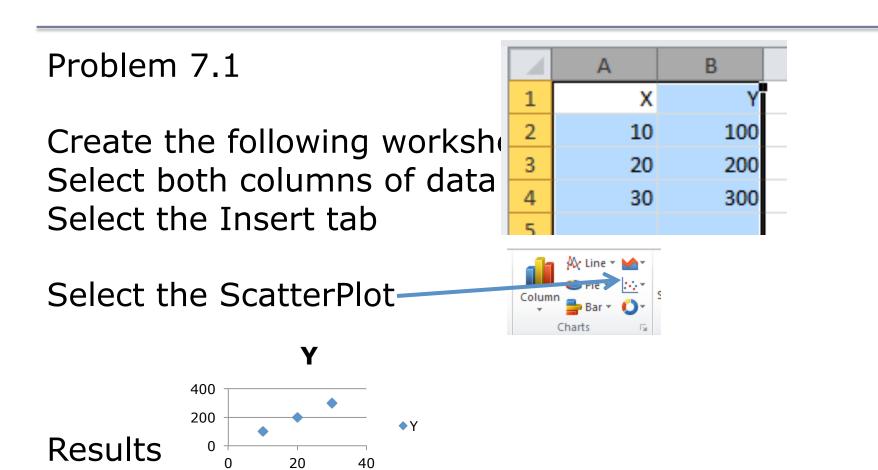


CS130 Regression

Winter 2014

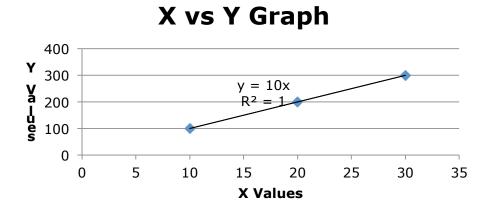
Regression Analysis

- Regression analysis:
 - usually falls under statistics and mathematical modeling
 - is a form of statistical analysis used in forecasting
 - estimates the relationship between variables
 - Allows predictions
- During regression analysis, we need to fit functions to data.
 - What function best describes this data?


Regression Analysis

- Trendlines are used to graphically display trends in data and to analyze problems of prediction.
- Draw a line that best fits the data.
- Regression analysis allows you to extend a trendline in a chart beyond the actual data to predict values
- Place the line such that the distance from each data point to the line is minimized.

Regression Analysis


- There a many types of regression models, the most common is <u>linear regression</u>
- In linear regression, we try to find a straight line that best fits our data.
 - Plot data using Excel's XY or scatter chart.
 - Add the trendline to the chart

Regression Analysis using Excel

Add Trendline & Equation

- Dress up the graph using the Layout tab
 - Select Axes Titles to label the x & y-axis
 - Select Analysis to add a trendline, equation, and R^2 value

Change the Y value from 200 to 150. What do you notice?

In the CS130 Pub folder is a file called CandyBars.xls. Copy this file to your Desktop, open it and do the following.

- Create a ScatterPlot of the data Carbohydrates and Sugars. Which goes on the X-Axis? Why?
- 2. Add a trendline to your chart, display the function or equation, and display the R^2 value
- 3. Is the function a good predictor? Why or Why not?
- 4. What is the amount of sugars (in grams) that we can expect from a candy bar with 60 grams of carbohydrates?
- 5. Add an empty column after name. In that column, place an asterisk for foods that have a carbohydrate count of 40 grams or higher and a sugar count of 35 grams or higher.
- 6. Turn on the **AutoFilter** and find out the number of M&M/Mars candy that fits these criteria.

Nonlinear Regression

- Often times, relationships are nonlinear and we need a different type of graph to fit the data.
- Excel provides us with different types of nonlinear functions that we can use to fit data. These functions include:
 - Polynomial
 - Exponential
 - Logarithmic
 - Power

Copy FluSeason2012_2013 from CS130 Public to your desktop

http://www.cdc.gov/flu/weekly/weeklyarchives2012-2013/data/whoAllregt11.htm

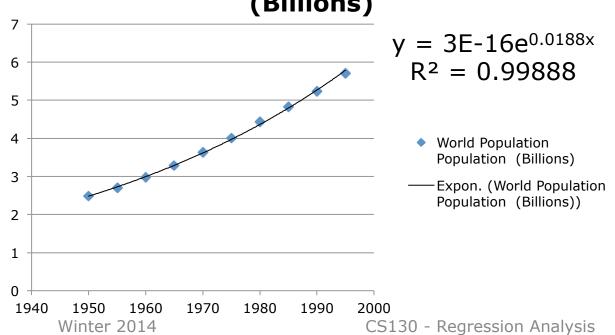
The flu season can be broken into two phase, flu growth and flu decline.

- 1. Fit different types of nonlinear functions to the growth data
- 2. Which works best?
- 3. How do we know?

Flu Growth		Flu Decline	
Total Infections	Week	Total Infections	Week
163	1	6425	14
197	2	6832	15
300	3	5892	16
339	4	5093	17
409	5	4029	18
619	6	3056	19
851	7	2376	20
1365	8	2052	21
2030	9	1731	22
3422	10	1509	23
4561	11	899	24
5891	12		
6442	13		

Problem 7.3 Continued

- 1. If the growth phase did not end, how many infections would we expect in week 15?
- 2. If the growth phase did not end, in what week would we expect 10,000 infections?


Solving Exponential and Logarithmic Equations

- Recall that to solve an equation of the form $y = ae^{bx}$ for x (where a and b are just constants), you first divide by a to obtain $y/a = e^{bx}$. Now, you must take the natural logarithm of each side to obtain $\ln(y/a) = bx$. Dividing by b yields $x = (1/b)\ln(y/a)$.
- Recall that to solve an equation of the form $y = a \ln(bx)$ for x (where a and b are just constants), you again divide by a to obtain $y/a = \ln(bx)$. Now, you must exponentiate each side to obtain $e^{y/a} = bx$. Dividing by b yields $x = (1/b)e^{y/a}$.

http://zeus.cs.pacificu.edu/shereen/cs130w14/WorldPop.html

 Import this data into Excel and run an exponential regression.

World Population Population (Billions)

The equation contains a good deal of rounding.

We know this from **E-16**

In order to use the equation to predict values:

Right Click Equation Format Trendline Label Number Decimal Places: 18

7.4 Continued

- What is the predicted population in 2000?
- When will the population hit 7.0 billion people?
- Check WorldOMeters to see when the world hit 7 billion people. How accurate was the model?

http://www.worldometers.info/world-population/

The following data is from an actual study that considered how memory decreases with time.

- Read a list of 20 words slowly aloud
- later, at different time intervals, how many can you recognize?
- The percentage, P, of words recognized was recorded as a function of the time t elapsed in minutes.

Problem 7.5 Continued

http://zeus.cs.pacificu.edu/shereen/cs130w14/Problem7.5.html

T,min	5	15	30	60	120	240	480	720	2880	5760
P%	73.0	61.7	58.3	55.7	50.3	46.7	38.3	29.0	24.0	18.7

- 1. What is the logarithmic trendline for the given data?
- 2. At what time T can we expect 40% of the words to be remembered? In order to solve this problem, rewrite the logarithmic equation solving for x. Then using Excel, find the answer to the given question.
- 3. Check your answer using Goal Seek. The two answers should be very close.