CS130 Regression

Winter 2012

Regression Analysis

- Regression analysis:
- usually falls under statistics and mathematical modeling and can be applied to many scientific and business applications
- is a form of statistical analysis used in forecasting
- estimates the relationship between variables, so that a particular variable can be predicted from one or more other variables
- During regression analysis, we need to fit functions to data.

Regression Analysis

- Trendlines are used to graphically display trends in data and to analyze problems of prediction.
- In other words, we try to draw a line that best fits the data. By using regression analysis, you can extend a trendline in a chart beyond the actual data to predict future values.
- However, you should understand that the line should be placed such that the distance or variation from each data point to the line is minimized.

Linear Regression

- There are many types of regression models, the most common is linear regression
- In linear regression, we try to find a straight line that best fits our data.
- We first need to plot our data using Excel's XY or scatter chart.
- We then add the trendline to the chart and use the function to predict future values for our data.

Regression Analysis using Excel

Problem 7.1

Create the following worksheet Select both columns of data Select the Insert tab

Select the ScatterPlot

Results

Add Trendline \& Equation

- Dress up the graph using the Layout tab
- Select Axes Titles to label the x \& y-axis
- Select Trendline to add a trendline
- Right click on trendline to add equation, and $R \wedge 2$ value

X vs Y Graph

- Change the Y value from 200 to 150 . What do you notice?

Problem 7.2

In the CS130 Pub folder is a file called CandyBars.xls. Copy this file to your Desktop, open it and do the following.

1. Create a ScatterPlot of the data Carbohydrates and Sugars.
2. Add a trendline to your chart, display the function or equation, and display the $\mathrm{R}^{\wedge} 2$ value
3. Is the function a good predictor? Why or Why not?
4. What is the amount of sugars (in grams) that we can expect from a candy bar with 60 grams of carbohydrates?
5. Add an empty column after name. In that column, place an asterisk for foods that have a carbohydrate count of 40 grams or higher and a sugar count of 35 grams or higher.
6. Turn on the AutoFilter and find out the number of M\&M/Mars candy that fits these criteria.

Nonlinear Regression

- Often times, relationships are nonlinear and we need a different type of graph to fit the data.
- Excel provides us with different types of nonlinear functions that we can use to fit data. These functions include:
- Polynomial
- Exponential
- Logarithmic
- Power

Problem 7.3

Let us consider the following data		
which represents the number of		${ }_{\substack{159 \\ 622 \\ \\ \text { 2130 }}}$
deaths, N , from AIDS in the United		$\begin{array}{r}2130 \\ 5655 \\ \hline\end{array}$
States from 1981 to 1996, where t		$\begin{array}{r}5635 \\ 12607 \\ \hline\end{array}$
denotes the number of years after		24417 41129 1505
		41298 62248 1023
1. Fit different types of nonlinear	11	900039 $\substack{12157 \\ 158193 \\ \hline}$
functions to the data	12	${ }_{1}^{1599287}$
2. Which works best?	13	${ }_{2}^{243923585}$
3. How do we know?	15 16 16	340957 375504

Problem 7.3 Continued

1. What is the predicted number of deaths from AIDS in 1997?
2. In what year can we expect $1,000,000$ deaths from aids?

Solving Exponential and Logarithmic Equations

- Recall that to solve an equation of the form $y=a e^{b x}$ for x (where a and b are just constants), you first divide by a to obtain $y / a=e^{b x}$. Now, you must take the natural logarithm of each side to obtain $\ln (y / a)=b x$. Dividing by b yields $x=(1 / b) \ln (y / a)$.
- Recall that to solve an equation of the form $y=a$ $\ln (b x)$ for x (where a and b are just constants), you again divide by a to obtain $y / a=\ln (b x)$. Now, you must exponentiate each side to obtain $\mathrm{e}^{\mathrm{y} / \mathrm{a}}=\mathrm{bx}$. Dividing by b yields $x=(1 / b) e^{y / a}$.

Problem 7.4

The following data is from an actual study that considered how memory decreases with time. The subjects each read a list of 20 words slowly aloud, and later, at different time intervals, were shown a list of 40 words containing the 20 words that he or she had read. The percentage, P , of words recognized was recorded as a function of the time t elapsed in minutes. The table below shows the averages for 5 different subjects.

Problem 7.4 Continued

T, min	5	15	30	60	120	240	480	720	2880	5760
P\%	73.0	61.7	58.3	55.7	50.3	46.7	38.3	29.0	24.0	18.7

1. What is the logarithmic trendline for the given data?
2. At what time T can we expect 40% of the words to be remembered? In order to solve this problem, rewrite the logarithmic equation solving for x . Then using Excel, find the answer to the given question.
3. Check your answer using Goal Seek. The two answers should be very close.
