

SPSS Regression and Importing Data Fall 2012

Regression EarthQuakeSmall.sav in CS 130 Public

- Analyze |
- Regress |
- Curve Estimation

EarthQuake7DayM25_orig.say [DataSet1] - PASW Statistics Data Editor														
File	<u>E</u> dit ⊻	iew	<u>D</u> ata	Transf	orm	<u>A</u> nalyze	<u>G</u> raphs	Utilities	Ad	d- <u>o</u> ns	Winde	ow <u>H</u> e	elp	
				Reports Descriptive Statistics				Å Å	*,					
1 : Src us				Com	Compare Means 🔹 🕨									
		Src	E	Eqid		<u>G</u> ene	eral Linear	Model	•	tetim	ie			La
	1	us	b0001	Imgd	4	Gene	erali <u>z</u> ed Lin	ear Model	sÞ	11 03	8:46:29	UTC		-8
	2	us	b0001mg2		5	Mi <u>x</u> ed Models		•	11 03	8:30:11	UTC		32	
	3	nc	71530295		1	<u>C</u> orrelate		•	11 02	2·29·21 UTC			38	
	4	nc	71530230		6	Regression		•	Linear				8	
	5	ak	10182565		1	Loglinear							P	6
	6	us	b0001	l mfa	9	Class	si <u>r</u> y Reise Bask	De du ation	-	🔣 Partial Lea <u>s</u> t Squares				() 2
	7	us bOOO us bOOO us bOOO		l mej	5		nsion Reduction	JCHON						
	8			l m9j	6	Noon	o narametric i	rametric Tests		Multinomial Logistic				4
	9			lm4j	7	Fore	casting	10 16313		Crdinal				10
	10	ak	k 10182353 s b00011zv s 2011hxbb		2	Surv	Survival			R	B Duckà			2
	11	us			5	⊥		se		Nonlinear				6
	12	us			3	Quali	ity Control	ntrol						2
	13	ak	10182	2270	1	ROC	Curve			wis	<u>W</u> eight	Estimatio	n	9
	14	nm	nm 022811f		А	ivionuay, repruar		ennary	20,	R 2SLS	<u>2</u> -Stage	e Least Se	quares	E.
	15	nm	02281	l1e	А	Ν	Monday, I	February	28.	2011	13:15:	53 UTC		35

Regressions continued

Src a Eqid Version Datetime Lat Lon NST Region Case Labels: Include constant in equation Pigt models Models Linear Quadratic Compound Growth Linear Quadratic Compound Growth Linear Quadratic Upper bound:

Model Summary and Parameter Estimates

Dependent Variable:Magnitude

Equation		Мо	del Summa	Parameter Estimates				
	R Square	F	df1	df2	Sig.	Constant	b1	b2
Linear	.061	11.765	1	181	.001	3.578	.003	
Quadratic	.074	7.173	2	180	.001	3.495	.006	-7.097E-6

The independent variable is Depth.

Equations?

R²?

Importing Data

- Let's import some data from a table on a web page. The following steps will get us weather data for Forest Grove for September 2012.
- In a web browser, go to: <u>http://www.wunderground.com/history/</u>
- Location: 97116
 September 1, 2012
 Submit
 Custom
 September 1, 2012 to September 25, 2012
 Go

Importing Data

- Scroll down to the Daily Observations table and click on Comma Delimited File at the bottom. This converts the table to a text file with the items separated by commas. Select the text and copy it.
- Open Excel and paste the data into cell A1.

Convert to Columns

- Now we need to convert the text to columns. Go to the Data tab and click on Text to Columns. Select Delimited, and on the next screen select commas.
- Your data should now be in the correct format.

Preparing Data for SPSS

- Since SPSS needs the data in a particular format, we need to edit the spreadsheet. The first row needs to contain the variable names that SPSS will use during the import. Remember, spaces are not your friend.
- Edit row 1 to remove all spaces. In the names.

Preparing Data for SPSS

- Add a DayOfWeek column before the MaxTemperatureF column.
- Insert a column, add a heading DayOfWeek, and type Saturday in the second row (Sep 1, 2012 was a Saturday). Click and drag Thursday to fill in the remaining rows. Excel should fill out the days of the week correctly.

Opening Data in SPSS

- Save this as an Excel file (Wunderground-Sep2012) and close the workbook.
- Open the new Excel file in SPSS. Check the definition of each variable and make any changes you deem necessary.
- Add values to DayOfWeek (1=Sunday, 2=Monday....)
- Transform | Recode into Same Variables...
 - Map: Sunday=1, etc for DayOfWeek.

Charts

- Build a chart to show the mean temperature over time, from September 1 to September 25.
- What type of chart should you use? Why?
- What is on the X-Axs? Why?
- What is on the Y-Axis? Why?

Charts

- Build a chart to show the mean high temperature per day of the week, from September 1 to September 25. (This should show the mean temperature of Sunday, Monday, Tuesday, etc. in the correct order).
- What type of chart should you use? Why?
- What is on the X-Axs? Why?
- What is on the Y-Axis? Why?

Charts

How well does average humidity predict low dew point?

Tree Data

- Using the sample data set entitled "TreeData.txt" found in the CS130 Public folder and SPSS create a dataset called **TreeData.sav** and report in the Word document PUNetIDAnswers.doc the answers to each of the following questions.
- When asked for, place a graph into your document with the appropriate explanation.

Tree Data: Descriptive Stats

- List each variable in the dataset TreeData.sav.
 Further, list the type and measure that each variable should be and briefly explain why.
- What is the mean, median, mode, and standard deviation for each of the variables: (a) Trunk Girth and (b) Weight.
- Construct a <u>single</u> bar chart that shows the Mean Weight of each root category.

Tree Data: Regression

 Using SPSS, perform the correct linear regression on weight and trunk girth. Make sure you properly identify the Dependent and Independent variable. Paste in the **Coefficients** table and the scatter chart.