
CS360 Lecture 20
Servlets

Tuesday, April 27, 2004

Reading
Chapter 24

Servlets
Servlets are pieces of Java code that add functionality to a web server in a manner
similar to the way applets add functionality to a browser. A servlet is a small, pluggable
extension to a server that enhances the server’s functionality. Servlets are most often
used to extend web servers, providing a powerful, efficient replacement for CGI scripts.

Client-server relationship is a request/response model of communication. The servlets
that we are interested in enhance the functionality of the World Wide Web servers.

Many developers feel that servlets are the right solution for database-intensive
applications that communicate with thin clients.

Servlets vs. Java Server Pages
Servlets are used when only a small portion of the content sent to the client is static text
or markup. Instead, they perform a task on behalf of the client. The opposite is true of
JSPs.

Servlets and Java Server Pages are supported by the Apache web server, Microsoft’s IIS,
IBM’s WebSphere and many more.

The servlets that we will look will demonstrate communication between clients and
servers using the HTTP protocol.

Java Networking Packages
java.net for socket and packet based communications.
java.rmi packages for remote method invocation.
org.omg packages for CORBA.
javax.servlet and javax.servlet.http for servlets.
javax.servlet.jsp and javax.servlet.jsp.tagext for Java Server Pages.

HTTP Basics
HTTP is a simple, stateless protocol. When a client connects to a server and makes an
HTTP request, the request can be of several different types, called methods, and the most
frequently used are GET and POST.

The GET method is designed for getting information (a document or a result of a
database query) and the POST method is designed for posting information (a credit card
number, information to be stored in a database).

GET is the method used when you click on a hyperlink; either GET or POST can be used
when submitting an HTML form.

Apache Tomcat
Tomcat is a Java servlet container and web server from the Jakarta project of the Apache
Software Foundation. It is a free, open source servlet and JSP engine.

I have installed Tomcat on the natural science server. You can verify that it is up and
running by typing in:
http://server.ns.pacificu.edu:8080/

I have also given you all permissions to startup and shutdown the server as necessary. I
needed to do this because when you write your own servlets you will need to restart the
server sometimes.

To do this, connect to server.ns.pacificu.edu using an ssh client and your username and
password. Navigate to the directory: Students/jakarta-tomcat-4.1.12-LE-jdk14/bin

Once there, you can startup the server by typing ./startup.sh and shutdown by typing
./shutdown.sh

Directory Structure
Inside the folder Students/jakarta-tomcat-4.1.12-LE-jdk14/webapps you will find a
folder with your user name. The example that I am using is created under the folder
shereen. This is where you will place all your servlets and html files. Your folder should
contain the following folders:

/servlets : This will contain all your html files.

/WEB-INF/classes : This will contain your Java class files. You could also store your
Java source files here too, but it is not necessary.

/WEB-INF/web.xml : will list all your servlet information

Simple Servlet
The most basic type of servlet generates a full HTML page. The following servlet
generates an html file containing the wording Hello World
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class WelcomeServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println("<html>");

 out.println("<head>");
 out.println("<title>A Simple Servlet Example</title>");
 out.println("</head>");

 out.println("<body>");
 out.println("<h1>Hello World</h1>");
 out.println("</body>");

 out.println("</html>");

 out.close();
 }
}

This file was compiled and placed in the shereen/WEB-INF/classes directory. You
should compile it directly on the server as the server contains the javax.servlet packages.
Again you can do this by connecting to the server using the ssh client.

HTML File
<html>
<head>
 <title>Handling an HTTP Get Request</title>
</head>

<body>
 <form action = "/shereen/welcome1" method = "get">

 <p><label>Click the button to invoke the servlet
 <input type = "submit" value = "Get HTML Document" />
 </label></p>
 </form>
</body>
</html>

This html file was placed in the shereen/servlets directory.

web.xml
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
 <!-- General description of your Web application -->
 <display-name>
 Java How to Program JSP and Servlet Chapter Examples
 </display-name>

 <description>
 This is the Web application in which we
 demonstrate our JSP and Servlet examples.
 </description>

 <!-- Servlet definitions -->
 <servlet>
 <servlet-name>welcome1</servlet-name>

 <description>
 A simple servlet that handles an HTTP get request.
 </description>

 <servlet-class>
 WelcomeServlet
 </servlet-class>
 </servlet>

 <!-- Servlet mappings -->
 <servlet-mapping>
 <servlet-name>welcome1</servlet-name>
 <url-pattern>/welcome1</url-pattern>
 </servlet-mapping>
</web-app>

