
CS360 Lecture 15
Networking

Thursday, March 30, 2004

Reading
Networking: Chapter 18

I/O Streams
Java programs send and receive information using streams.

The Java API provides two types of streams in the java.io package. These are
the character and byte streams.

Character Streams

You should use character streams for reading and writing all textual data that
you use in your programs. The reason is that character streams read and
write 16-bit characters. These cover all the Unicode character set.



Byte Streams

These read and write 8-bit bytes at a time. These streams are typically used
to read and write binary data such as video and audio.

All the streams are automatically opened as soon as they are created. You
can close a stream using its close method or the garbage collector will close it
once it is no longer referenced.
The following table is taken from the Java tutorial at java.sun.com



Type
of I/O

Streams Description

CharArrayReader
CharArrayWriter
ByteArrayInputStream
ByteArrayOutputStream

Use these streams to read from and write to memory. You create
these streams on an existing array and then use the read and write
methods to read from or write to the array.

M
em

or
y

StringReader
StringWriter
StringBufferInputStream

Use StringReader to read characters from a String in
memory. Use StringWriter to write to a String.
StringWriter collects the characters written to it in a
StringBuffer, which can then be converted to a String.
StringBufferInputStream is similar to StringReader, except
that it reads bytes from a StringBuffer.

Pi
pe

PipedReader
PipedWriter
PipedInputStream
PipedOutputStream

Implement the input and output components of a pipe. Pipes are
used to channel the output from one thread into the input of
another.

Fi
le

FileReader
FileWriter
FileInputStream
FileOutputStream

Collectively called file streams, these streams are used to read
from or write to a file on the native file system.

C
on

ca
te

na
tio

n

N/A
SequenceInputStream Concatenates multiple input streams into one input stream.

O
bj

ec
t

Se
ri

al
iz

at
io

n

N/A
ObjectInputStream
ObjectOutputStream

Used to serialize objects.

C
on

ve
rs

io
n

N/A
DataInputStream
DataOutputStream

Read or write primitive data types in a machine-independent
format.

C
ou

nt
in

g

LineNumberReader
LineNumberInputStream Keeps track of line numbers while reading.

Pe
ek

in
g

A
he

ad PushbackReader
PushbackInputStream

These input streams each have a pushback buffer. When reading
data from a stream, it is sometimes useful to peek at the next few
bytes or characters in the stream to decide what to do next.

Pr
in

tin
g

PrintWriter
PrintStream

Contain convenient printing methods. These are the easiest
streams to write to, so you will often see other writable streams
wrapped in one of these.



B
uf

fe
ri

ng BufferedReader
BufferedWriter
BufferedInputStream
BufferedOutputStream

Buffer data while reading or writing, thereby reducing the
number of accesses required on the original data source. Buffered
streams are typically more efficient than similar nonbuffered
streams and are often used with other streams.

Fi
lte

ri
ng FilterReader

FilterWriter
FilterInputStream
FilterOutputStream

These abstract classes define the interface for filter streams,
which filter data as it's being read or written.

C
on

ve
rt

in
g 

be
tw

ee
n 

B
yt

es
an

d 
C

ha
ra

ct
er

s

InputStreamReader
OutputStreamWriter
.

A reader and writer pair that forms the bridge between byte
streams and character streams.
An InputStreamReader reads bytes from an InputStream and
converts them to characters, using the default character encoding
or a character encoding specified by name.
An OutputStreamWriter converts characters to bytes, using the
default character encoding or a character encoding specified by
name and then writes those bytes to an OutputStream.
You can get the name of the default character encoding by calling
System.getProperty("file.encoding")

Networking with Sockets
Let’s review socket networking.

Write a Java server that will display the current date when it receives the
message (date today) from the client.

Write a Java client that will send the message (date today) to the server and
then display the result that the server sends back.

Multithreaded Socket Servers
Modify the client and server programs that you just created so that the
server can accept multiple client connections at one time.




