
CS360 Lecture 14
Networking with Sockets

Thursday, March 18, 2004

Reading
Networking: Chapter 18

Back to Basics
Question: What is a network?

Nodes are any machines that are connected to a network. What are examples of nodes?

Fully functional computers on a network are also called hosts.

Every node on a network has an address. Nodes also usually have names to aid us human folks
because remembering network addresses is hard for us.

All modern computer networks are packet-switched networks. All data being sent across the
network is broken into packets and each packet contains the information about who sent it and
where it is going.

A protocol is a precise set of rules defining how computers communicate.  Examples of protocols
include http that defines how web browsers and servers communicate.

Layers of a Network
There are different layers of communication on a network.

The lowest level is the physical layer. This includes the actual wires, fibre optic cables or
whatever is used to connect the different nodes on the network. Java never sees the physical layer.

The next layer up is the data link layer. This converts the analog data that is being sent on the
physical later to the digital data needed by the computer. Error correction is also built into this
layer since analog data contains noise. The most common data link layer is Ethernet. Again Java
is not concerned with the data link layer.

The Internet or network layer is the first one that we need to concern ourselves with as Java
programmers. In this layer a protocol defines how bits and bytes are organised into packets. The
Internet Protocol (IP) is the only Internet protocol that Java understands. It’s also the most popular
protocol in the world. Examples of other protocols include AppleTalk and IPX. Data is sent
across the Internet layer in packets called datagrams.

In the Internet layer there is no guarantee that datagrams will be delivered. They also do not arrive
at their destination in the order they were delivered. The transport layer is responsible for ensuring



that packets are received in the order they were sent and making sure that no data was lost. There
are two protocols at this level; TCP and UDP. TCP is the reliable protocol that allows for
retransmission of lost data and delivery of bytes in the order they were sent. UDP is the unreliable
protocol that is much faster but does not guarantee the delivery of the packets.

Finally, the application layer delivers the data to the user. It decides what to do with the data. The
application layer is where most of the network parts of Java programs spend their time.
Application layer protocols include HTTP, FTP, SMTP, POP and many more.

In summary, the application produces some data, adds a header to it and tells the receiving
application how to handle it, and hands it to the transport layer. The transport layer adds another
header and hands the result to the Internet layer.

Application Layer Adds application header
Transport Layer Adds TCP header
Internet/Network Layer Adds IP header
Data Link Layer Adds Ethernet header
Physical Layer

IP
IP was developed with military sponsorship during the Cold War. It is robust and platform
independent. If one computer in the network goes down the whole network does not go down.
Therefore, IP was designed to allow multiple routes between any two points.

TCP
There are multiple routes between two points and the shortest path between two points changes
over time due to network traffic and other factors. This means that packets that make up a
particular data stream may not arrive in the order sent or arrive at all. TCP was added to give each
connection the ability to acknowledge the receipt of IP packets and request retransmission of lost
packets. TCP also puts the packets back together. This means that TCP carries some overhead.

UDP
If the order of the data isn’t particularly important and if the loss of individual packets won’t
completely corrupt the data stream, packets are sent without the guarantee that TCP provides.
This is accomplished through UDP. Examples of such data are video and audio signals.

IP Addresses
Java programmers do not need to be concerned with IP, but should know about addressing. Every
computer on an IP network has a unique four-byte number. An example is 144.1.32.90

Ports
If computers did only one thing at a time then IP addresses will be all we need. However,
computers do more than one thing at once. For example email needs to be separated from web and
ftp requests. This is achieved through ports.



Purpose Port Number
HTTP 80
SMTP 25
Telnet 23
POP3 110
IRC 194
Kazaa 1214 but can be reconfigured

Sockets

In client-server applications, the server provides some service, such as processing
database queries or sending out current stock prices. The client uses the service
provided by the server, either displaying database query results to the user or making
stock purchase recommendations to an investor. The communication that occurs
between the client and the server must be reliable. That is,  no data can be dropped
and it must arrive on the client side in the same order in which the server sent it.

TCP provides a reliable, point-to-point communication channel that client-server
applications on the Internet use to communicate with each other. To communicate
over TCP, a client program and a server program establish a connection to one
another. Each program binds a socket  to its end of the connection. To communicate,
the client and the server each reads from and writes to the socket bound to the
connection.

A socket is one end-point of a two-way communication link between two programs
running on the network. Socket classes are used to represent the connection between
a client program and a server program. The java.net package provides two classes--
Socket and ServerSocket--that implement the client side of the connection and the
server side of the connection, respectively.

Normally, a server runs on a specific computer and has a socket that is bound to a
specific port number. The server just waits, listening to the socket for a client to make
a connection request.

On the client-side: The client knows the hostname of the machine on which the server
is running and the port number to which the server is connected. To make a
connection request, the client tries to rendezvous with the server on the server's
machine and port.



If everything goes well, the server accepts the connection. Upon acceptance, the
server gets a new socket bound to a different port. It needs a new socket (and
consequently a different port number) so that it can continue to listen to the original
socket for connection requests while tending to the needs of the connected client.

On the client side, if the connection is accepted, a socket is successfully created and
the client can use the socket to communicate with the server. Note that the socket on
the client side is not bound to the port number used to rendezvous with the server.
Rather, the client is assigned a port number local to the machine on which the client is
running.

The client and server can now communicate by writing to or reading from their
sockets.

Socket Client/Server Example
import java.net.*;
import java.io.*;

public class KnockKnockServer
{
  public static void main( String[] args ) throws IOException
  {
    ServerSocket serverSocket = null;
    try
    {
      serverSocket = new ServerSocket( 7777 );
    }
    catch ( IOException e )
    {
      System.err.println("Could not listen on port: 4444.");
      System.exit(1);



    }

    Socket clientSocket = null;
    try
    {
      clientSocket = serverSocket.accept();
    }
    catch ( IOException e )
    {
      System.err.println( "Accept failed." );
      System.exit(1);
    }

    ObjectOutputStream output =
new ObjectOutputStream( clientSocket.getOutputStream() );

    ObjectInputStream input =
new ObjectInputStream( clientSocket.getInputStream() );

    String inputLine, outputLine;
    KnockKnockProtocol kkp = new KnockKnockProtocol();
    outputLine = kkp.processInput( null );
    output.writeObject( outputLine );
    output.flush();

    try
    {
      while((inputLine = (String) input.readObject()) != null)
      {
        outputLine = kkp.processInput( inputLine );
        output.writeObject( outputLine );
        output.flush();
        if ( outputLine.equals( "Bye." ) )
          break;
      }
    }
    catch ( ClassNotFoundException classNotFoundException )
    {
      System.err.println( "\nUnknown object type received" );
        System.exit(1);
    }
    output.close();
    input.close();
    clientSocket.close();
    serverSocket.close();
  }
}



import java.net.*;
import java.io.*;

public class KnockKnockProtocol
{
  private static final int WAITING = 0;
  private static final int SENTKNOCKKNOCK = 1;
  private static final int SENTCLUE = 2;
  private static final int ANOTHER = 3;

  private static final int NUMJOKES = 5;

  private int state = WAITING;
  private int currentJoke = 0;

  private String[] clues = { "Turnip", "Little Old Lady",
        "Atch", "Who", "Who" };

  private String[] answers = { "Turnip the heat, it's cold!",
                               "I didn't know you could yodel!",
                               "Bless you!",
                               "Is there an owl in here?",
                               "Is there an echo in here?" };

public String processInput( String theInput )
{
  String theOutput = null;

  if( state == WAITING )
  {
    theOutput = "Knock! Knock!";
    state = SENTKNOCKKNOCK;
  }
  else if( state == SENTKNOCKKNOCK )
  {
    if( theInput.equalsIgnoreCase( "Who's there?" ) )
    {
      theOutput = clues[currentJoke];
      state = SENTCLUE;
    }
    else
    {
      theOutput = "You're supposed to say \"Who's there?\"! " +

            "Try again. Knock! Knock!";
    }
  }



  else if ( state == SENTCLUE )
  {
    if (theInput.equalsIgnoreCase(clues[currentJoke] + " who?"))
    {
      theOutput = answers[currentJoke] + " Want another? (y/n)";
      state = ANOTHER;
    }
    else
    {
      theOutput = "You're supposed to say \"" +

     clues[currentJoke]
                  + " who?\"! Try again. Knock! Knock!";
      state = SENTKNOCKKNOCK;
    }
  }
  else if ( state == ANOTHER )
  {
    if( theInput.equalsIgnoreCase( "y" ) )
    {
      theOutput = "Knock! Knock!";
      if( currentJoke == ( NUMJOKES - 1 ) )
        currentJoke = 0;
      else
        currentJoke++;
        state = SENTKNOCKKNOCK;
    }
    else
    {
      theOutput = "Bye.";
      state = WAITING;
    }
  }

  return theOutput;
  }
}

import java.io.*;
import java.net.*;

public class KnockKnockClient
{
  public static void main( String[] args ) throws IOException
  {

    final String HOST = "";



    Socket kkSocket = null;
    try
    {
      kkSocket = new Socket( HOST, 7777 );
    }
    catch ( IOException e )
    {
      System.err.println( "Couldn't get I/O for connection to:"

    + HOST );
      System.exit(1);
    }

    ObjectOutputStream output =
new ObjectOutputStream( kkSocket.getOutputStream() );

    ObjectInputStream input =
new ObjectInputStream( kkSocket.getInputStream() );

    BufferedReader stdIn =
        new BufferedReader( new InputStreamReader( System.in ) );
    String fromServer, fromUser;

    try
    {
      while ((fromServer = (String) input.readObject()) != null)
      {
        System.out.println( "Server: " + fromServer );
        if ( fromServer.equals( "Bye." ) )
          break;

        fromUser = stdIn.readLine();

      if ( fromUser != null )
      {
          System.out.println( "Client: " + fromUser );
          output.writeObject( fromUser );
        }
      }
    }
    catch ( IOException e )
    {
      System.err.println( "Couldn't get I/O for connection to: "

+ HOST );
      System.exit(1);
    }
    catch ( ClassNotFoundException classNotFoundException )



    {
      System.err.println( "\nUnknown object type received" );
    }
    output.close();
    input.close();
    stdIn.close();
    kkSocket.close();
  }
}


