AI Application Areas

- Neural Networks and Genetic Algorithms
 - These model the structure of neurons in the brain
 - Humans are good at interpreting noisy input. Neural networks can also handle noisy data because they use a large number of finegrained units
 - Genetic algorithms contain genetic operator such as crossover and mutation

Physical Symbol System Hypothesis

- Intelligence is achieved through:
 - Symbols to represent the problem domain
 - Operations on these symbols to generate solutions
 - Searching to select the most likely solution from this list
- These can be narrowed down to:
 - Knowledge representation
 - Search

Knowledge Representation

- Capture the essential features of a problem domain
- Provide the information to a problem-solving procedure
- Abstraction is important
- Expressiveness vs. efficiency
- The language should also be readable to humans

What Representation

It is important to select the most appropriate representation language for the problem

Representation Schemes

These should:

- Express all the necessary information
- Resulting code should be executed efficiently
- Be a natural scheme for describing the knowledge

Al problems tend to be qualitative not quantitative and use reasoning not calculation

Handle Qualitative Knowledge

Searching

Exhaustive Search

- Not possible for most problems
- \clubsuit Chess contains 10^{120} different board states
- Humans do not perform exhaustive searches
- Humans make decisions based on judgment rules
 These are called heuristics

Heuristic

A strategy for selectively searching a problem space

- Heuristics are not foolproof
 - But it should come close to a solution
- State space search formalizes the problem-solving process
- Heuristics infuse the formalism with intelligence

Propositional Logic

Symbols of propositional logic (calculus)

- Propositional symbols:
 - ✓ P, Q, R, S, ...
- Truth symbols:
 - ✓ True, false
- > Connectives:

 $\checkmark \land \lor \neg \rightarrow \equiv$

Sentences

- Every propositional symbol and truth symbol is a sentence
- The negation of a sentence is a sentence
- The conjunction of a sentence is a sentence
- The disjunction of a sentence is a sentence
- The implication of one sentence from another is a sentence
- The equivalence of two sentences is a sentence