Announcements

* 1st Assignment due next Monday, Sep 15, 2003

1st Exam next Friday, Sep 19, 2003
1st Quiz next week

- Start reading Chapter 4

Program

- Write a program to convert a temperature in degrees Fahrenheit to degrees Celsius
$>$ Celsius $=(5 / 9)^{*}($ Fahrenheit - 32)

Program

*Write a program that asks the user for their name and phone number and prints the information on one line.

* How would we add their address to the information read in?

General Programming Style

* Header of comments
* Comment each variable (or similar groups of variables)
- Comment each major step of program
* Include spaces between lines of code when appropriate
* Indent the body of your program (declaration and executable statements)
* We'll learn more formatting rules later

Arithmetic Formatting

- Include spaces around operators and =
* Can include any line breaks in single executable statement
$>$ Indent any continued arithmetic expression
$\checkmark x=$ sum_of_prices/total_prices + std_dev_prices;
\checkmark (Yes, you can continue an assignment statement on the next line)
$>$ Do not put a line break in the middle of an identifier, reserved word or string literal
* Do not put spaces between <<, >>, //

Programming Errors (Bugs)

- Syntax error
$>$ Error with grammar rules
> Compiler will catch
- Run-time error
$>$ Program compiles, but does not run to completion
> Eg.: Division by zero
- Logic error
$>$ Program completes, but wrong answer
$>$ Eg.: Calculating area of circle using wrong value for pi

Example Problems

State order of evaluation of the operators:

$$
\begin{aligned}
& x=7+3 * 6 / 2-1 \\
& x=2 \% 2+2 * 2-2 / 2 \\
& x=(3 * 9 *(3+(9 * 3 /(3))))
\end{aligned}
$$

What is output? $\mathrm{x}=2$ and $\mathrm{y}=3$

cout $\ll x$;
cout $\ll x+x$;
cout << "x=";
cout \ll " $x=$ " $\ll x$;
cout $\ll x+y \ll "=$ " $\ll y+x$;
$z=x+y$;
cin $\gg x \gg y$;
//cout \ll " $x+y=" \ll x+y$;

Programs

- Write a program that reads in two numbers and prints their sum, difference, product and quotient

Chapter 4: Selection Structures

* We're now ready to start learning more complicated executable statements
* Up until now, all the executable statements execute in our program
- Selection structures (if and switch) allow us to conditionally execute statements
- Read Sections 4.1-4.3

Examples

* If someone enters an illegal value for input, we can print out an error message

We can give the user choices for what they want the program to do

Control Structures

* We have seen sequential flow of a program
* Now we will learn control structures for selection

Next we will learn control structures for repetition

Logical Expressions

:The primary selection statement is if
:The format is
$>$ if (some condition is true)
$>$ execute some statement(s)
How do we express the condition?

- Example
if (weight > 100.0)
shipCost $=10.00$;
else
shipCost $=5.00$;

Relational \& Equality Operators

- < less than
> greater than
<= less than or equal to
* $>=$ greater than or equal to
* == equal to
! != equal to
relational
relational
relational
relational
equality
equality

Logical expressions

* Have value true (1) or false (0)
- Include relational or equality operators

When used in an if statement, called a condition

- Examples:
$>\mathrm{x}<=0$
$>$ power < maxPower
$>x>=y$
$>$ item $>$ minItem
$>$ momOrDad $==\quad$ ' ${ }^{\prime}$
> num != sentinel

Logical Operators

Operators combine logical expressions

- Operators:
$>\& \& \quad$ and
$>\|$ or
$>!$ not
- Examples:
$>$ (salary < minSalary) || (dependents > 5)
$>($ temp $>90.0) \& \&(h u m i d i t y>0.9)$

Evaluating Expressions

- (expr1 || expr2)
$>$ Either expr1 or expr2 is true
- Examples:
> (salary < minSalary) || (dependents > 5)
$>$ To qualify for financial aid, salary has to be less than some minimum salary or the number of dependents is greater than 5
$>$ Only one condition has to be true

Evaluating Expressions And

- (expr1) \&\& (expr2)
- Both expr1 and expr2 have to be true
- Example:
(temp > 90.0) \&\& (humidity > 0.9)
These are unbearable heat and humidity conditions
Both must be true for the entire expression to be true

Not

* Logical complement or negation: !

Unary operator
Examples:
! ((salary < minSalary) \&\& (dependents > 5))
What makes this true? False?
winningRecord \&\& !probation

How do we evaluate?

$x<\min +\max$
min $<=x$ \&\& $x<=\max$
$!x==Y$

Operator Precedence

Negation, Unary + , -
Mult, div, mod

Add, Subtract

Relational
Equality
And
Or
Assignment

Examples

Assume x is $3.0, \mathrm{y}$ is $4.0, \mathrm{z}$ is 2.0 and flag is false
*What is the value of these expressions?
!flag
$x+y / z<=3.5$
!flag || (y + z >= $x-z$)
! (flag || (y $+\mathrm{z}>=\mathrm{x}-\mathrm{z})$

