Announcements

- 1st Assignment due next Monday, Sep 15, 2003
- 1st Exam next Friday, Sep 19, 2003
- 1st Quiz next week
- Start reading Chapter 4

- Write a program to convert a temperature in degrees
 Fahrenheit to degrees Celsius
 - > Celsius = $(5/9)^*$ (Fahrenheit 32)

Write a program that asks the user for their name and phone number and prints the information on one line.

How would we add their address to the information read in?

General Programming Style

- Header of comments
- Comment each variable (or similar groups of variables)
- Comment each major step of program
- Include spaces between lines of code when appropriate
- Indent the body of your program (declaration and executable statements)
- We'll learn more formatting rules later

Arithmetic Formatting

- Include spaces around operators and =
- Can include any line breaks in single executable statement
 - Indent any continued arithmetic expression
 - v x = sum_of_prices/total_prices
 - + std_dev_prices;
 - ✓ (Yes, you can continue an assignment statement on the next line)
 - Do not put a line break in the middle of an identifier, reserved word or string literal
- Do not put spaces between <<, >>, //

Programming Errors (Bugs)

Syntax error

- > Error with grammar rules
- Compiler will catch

Run-time error

- Program compiles, but does not run to completion
- Eg.: Division by zero

Logic error

- Program completes, but wrong answer
- > Eg.: Calculating area of circle using wrong value for pi

Example Problems

State order of evaluation of the operators:

x = 7 + 3 * 6 / 2 - 1;

x= 2 % 2 + 2 * 2 - 2 / 2;

x = (3 * 9 * (3 + (9 * 3 / (3))));

What is output? x=2 and y = 3

cout << x; cout << x + x; cout << "x="; cout << "x=" << x; cout << x + y << "=" << y + x; z = x+y; cin >>x>>y; //cout << "x + y = " << x + y;</pre>

Write a program that reads in two numbers and prints their sum, difference, product and quotient

Chapter 4: Selection Structures

- We're now ready to start learning more complicated executable statements
- Up until now, all the executable statements execute in our program
- Selection structures (if and switch) allow us to conditionally execute statements
- Read Sections 4.1 4.3

- If someone enters an illegal value for input, we can print out an error message
- We can give the user choices for what they want the program to do

Control Structures

We have seen sequential flow of a program

Now we will learn control structures for selection

Next we will learn control structures for repetition

Logical Expressions

The primary selection statement is if

- The format is
 - > if (some condition is true)
 - > execute some statement(s)

How do we express the condition?

```
    Example
    if (weight > 100.0)
        shipCost = 10.00;
    else
        shipCost = 5.00;
```

Relational & Equality Operators

<	less than
♦ >	greater than
♦ <=	less than or equal to
♦ >=	greater than or equal to
♦ ==	equal to

!= equal to

relational relational relational relational equality equality

Logical expressions

- Have value true (1) or false (0)
- Include relational or equality operators
- When used in an if statement, called a condition

Examples:

```
➤ X <= 0</p>
```

- > power < maxPower</pre>
- **≻** x >=y
- > item > minItem
- > momOrDad == `M'
- > num != sentinel

Logical Operators

- Operators combine logical expressions
- Operators:

≻ &&	and
	or
▶!	not

- Examples:
 - > (salary < minSalary) || (dependents > 5)
 - > (temp > 90.0) && (humidity > 0.9)

Evaluating Expressions Or

- ♦ (expr1 || expr2)
 - Either expr1 or expr2 is true
- Examples:
 - > (salary < minSalary) || (dependents > 5)
 - To qualify for financial aid, salary has to be less than some minimum salary or the number of dependents is greater than 5
 - Only one condition has to be true

Evaluating Expressions And

✤ (expr1) && (expr2)

Both expr1 and expr2 have to be true

Example:

(temp > 90.0) && (humidity > 0.9)

These are unbearable heat and humidity conditions

Both must be true for the entire expression to be true

Not

- Logical complement or negation: !
- Unary operator

```
Examples:
```

```
!((salary < minSalary) && (dependents > 5))
```

```
What makes this true? False?
```

winningRecord && !probation

How do we evaluate?

- \$ x < min + max</pre>
- ☆ min <= x && x <= max</p>

♦ !x == y

Operator Precedence

* !, +, * *, /, %
* +, * <, <=, >, >=
* ==, !=
* &&
* ||
* =

Negation, Unary +, -Mult, div, mod Add, Subtract Relational Equality And Or Assignment

Examples

- Assume x is 3.0, y is 4.0, z is 2.0 and flag is false
- What is the value of these expressions?