Math122 College Algebra

Professor Douglas J. Ryan

4.1

Quadratic Functions \& Models

- A quadratic function is a polynomial function of degree 2.
- The form of a quadratic function is $f(x)=a x^{2}+b x+c(a \neq 0)$
- Standard form of a quadratic function is

$$
f(x)=a(x-h)^{2}+k
$$

Graph of a Quadratic

- The graph of a quadratic f is a parabola with vertex (h, k)
- If $a>0$ the parabola opens upward
- If $a<0$ the parabola opens downward

Problem

- Let $f(x)=2 x^{2}-8 x+12$

1. Express f in standard form
2. Sketch the graph of f

Maximum \& Minimum Values Of Quadratic Functions

- If $f(x)=a(x-h)^{2}+k$, the maximum or minimum value of f occurs at $x=h$
- If $a>0$, the minimum value of f is $f(h)=k$, that is, the minimum value of f is at (h, k)
- If $a<0$, the maximum value of f is $f(h)=k$, that is, the maximum value of f is at (h, k)
- Draw two graphs that generalizes each of these facts. That is, what is actually being said visually.

Problem

- Consider the quadratic function $f(x)=5 x^{2}-$ $30 x+49$

1. Express f in standard form
2. Find the minimum
3. Find the x-intercepts
4. Find the y-intercepts
5. Sketch the graph

General Maximum \& Mininimum Values of Quadratics

- The minimum or maximum value of a quadratic $f(x)=a x^{2}+b x+c(a \neq 0)$ occurs at $x=-\frac{b}{2 a}$
- If $a>0$, the minimum is $f\left(-\frac{b}{2 a}\right)$
- If $a<0$, the maximum is $f\left(-\frac{b}{2 a}\right)$

Problems

- Find the maximum or minimum value of

$$
\begin{aligned}
& \text { 1. } f(x)=x^{2}+6 x \\
& \text { 2. } g(x)=-2 x^{2}+4 x-6
\end{aligned}
$$

- The revenue generated by a manufacturer selling x units of a product is $P(x)=$ $-0.4 x^{2}+80 x$. How many units should be sold to obtain the maximum revenue?

