

Math122 College Algebra

Professor Douglas J. Ryan

4.1

Quadratic Functions & Models

- A quadratic function is a polynomial function of degree 2.
- The form of a quadratic function is $f(x) = ax^2 + bx + c \ (a \neq 0)$
- Standard form of a quadratic function is $f(x) = a(x h)^2 + k$

Graph of a Quadratic

• The graph of a quadratic *f* is a parabola with vertex (*h*, *k*)

• If a > 0 the parabola opens upward

• If a < 0 the parabola opens downward

Problem

- Let $f(x) = 2x^2 8x + 12$
 - 1. Express f in standard form

2. Sketch the graph of f

Maximum & Minimum Values Of Quadratic Functions

- If $f(x) = a(x h)^2 + k$, the maximum or minimum value of f occurs at x = h
- If a > 0, the minimum value of f is f(h) = k,
 that is, the minimum value of f is at (h, k)
- If a < 0, the maximum value of f is f(h) = k,
 that is, the maximum value of f is at (h, k)
- Draw two graphs that generalizes each of these facts. That is, what is actually being said visually.

Problem

- Consider the quadratic function $f(x) = 5x^2 30x + 49$
 - 1. Express f in standard form
 - 2. Find the minimum
 - 3. Find the x-intercepts
 - 4. Find the y-intercepts
 - 5. Sketch the graph

General Maximum & Mininimum Values of Quadratics

- The minimum or maximum value of a quadratic $f(x) = ax^2 + bx + c$ $(a \neq 0)$ occurs at $x = -\frac{b}{2a}$
- If a > 0, the minimum is $f\left(-\frac{b}{2a}\right)$
- If a < 0, the maximum is $f\left(-\frac{b}{2a}\right)$

Problems

- Find the maximum or minimum value of
 1. f(x) = x² + 6x
 2. g(x) = -2x² + 4x 6
- The revenue generated by a manufacturer selling x units of a product is $P(x) = -0.4x^2 + 80x$. How many units should be sold to obtain the maximum revenue?