# Math122 College Algebra 

Professor Douglas J. Ryan

## 3.2 <br> Graphs of Functions

- To graph a function $f$ the points $(x, f(x))$ are plotted in the coordinate plane
- Graph of a Function: If $f$ is a function with domain $A$, the graph of $f$ is $\{(x, f(x) \mid x \in A\}$
- Write down in English the meaning of $\{(x, f(x) \mid x \in A\}$


## Graphs of Functions

- The graph of function $f$ is the graph of the equation $y=f(x)$
- Sketch the graph of each of the following functions

1. $f(x)=\sqrt{x}$ (what is the domain and range?)
2. $f(x)=2^{x}$ (what is the domain and range?)

## Graphing Piecewise Defined Functions

- Graph the function $f(x)= \begin{cases}x^{2} & \text { if } x \leq 1 \\ 2 x+1 & \text { if } x>1\end{cases}$


## The Vertical Line Test

- The graph of a curve in the coordinate plane is a function if and only if no vertical line intersects the curve more than once


Not a function


Function
http://en.wikipedia.org/wiki/File:Vertical line test.png

## Equations That Define Functions

- The equation $y-x^{2}=0$ defines a relationship between $x$ and $y$
- To find out if the equation defines $y$ as a function of $x$ solve for $y$
- The equation $y=x^{2}$ defines a rule (function) that gives one value of $y$ for each $x$
- We can express the rule in function notation $f(x)=x^{2}$


## Problem

- Does the equation define $y$ as a function of $x$ ?

1. $y+x^{2}-2=0$
2. $x^{2}+y^{2}=9$

## Problem

- Does the equation define $y$ as a function of $x$ ? 3. $x=y^{3}$

