Math122 College Algebra

Professor Douglas J. Ryan

1.6

Inequalities

- Some problems lead to inequalities instead of equations.
- Equations have a fixed number of solutions
- Inequalities tend to have infinitely many solutions
$>$ Equation $4 x+7=15$ solution $x=2$
$>$ Inequality $4 x+7 \leq 15$ solution $x \leq 2$

Rules for Inequalities

1. $A \leq B \Leftrightarrow A+C \leq B+C$
2. $A \leq B \Leftrightarrow A-C \leq B-C$
3. If $C>0$, then $A \leq B \Leftrightarrow C A \leq C B$
4. If $C<0$, then $A \leq B \Leftrightarrow C A \geq C B$
5. If $A>0$ and $B>0$

$$
\text { then } A \leq B \Leftrightarrow \frac{1}{A} \geq \frac{1}{B}
$$

6. If $A \leq B$ and $C \leq D$, then $A+C \leq B+D$

Linear Inequality

- Solve the inequality $-3 x+4>11$
- Answer

$$
\begin{aligned}
& -3 x+4>11 \\
& (-3 x+4)-4>11-4 \\
& -3 x>7 \\
& \left(-\frac{1}{3}\right)(-3 x)<\left(-\frac{1}{3}\right)(7) \\
& x<-\frac{7}{3} \text { which is }\left(-\infty,-\frac{7}{3}\right)
\end{aligned}
$$

Problem

- Solve each of the following inequalities:

1. $4 x-3<2 x+5$
2. $-6<2 y-4<2$

Solving Nonlinear Inequalities

1. Factor
2. If a product (or quotient) has an even number of negative factors, the value is positive
3. If a product (or quotient) has an odd number of negative factors, the value is negative

Sample Problem

Solve $2 x^{2}-x<3$

1. Factoring yields $2 x^{2}-x-3<0$

$$
(x+1)(2 x-3)<0
$$

2. $2 x^{2}-x-3=0$ has solutions

$$
x=-1 \text { and } x=\frac{3}{2}
$$

3. The real axis can be divided into three parts as follows: $(-\infty,-1),\left(-1, \frac{3}{2}\right),\left(\frac{3}{2}, \infty\right)$

Sample Problem

- Next we determine the sign of each factor on each of the intervals

Interval	$(-\infty,-1)$	$(-1,3 / 2)$	$(3 / 2, \infty)$
Sign of $x+1$	-		
Sign of $2 x-3$	-		
Sign of $(x+1)(2 x-3)$	+		

- Fill in the rest of the table

Sample Problem

- A different way to represent the information from the previous slide

Interval	$(-\infty,-1)$	$(-1,3 / 2)$	$(3 / 2, \infty)$
k	-2	0	2
Value of $2 x^{2}-x-3$ at k	+7		
Sign of $2 x^{2}-x-3$ at k	+		

- Fill in the rest of the table

Sample Problem

- Using either table, we see that $\left(-1, \frac{3}{2}\right)$ are solutions to $2 x^{2}-x<3$
- Note: Since the inequality is strictly less than, we do not include -1 or $\frac{3}{2}$ in the solution set.

Problem

- Your turn ... Solve $y^{2} \geq 7 y-10$. Represent your solutions: (a) using interval notation and (b) graphically

Interval			
k			

Problem

- Solve $\frac{x+5}{x+3} \geq 0$. Represent your solutions: (a) using interval notation and (b) graphically

Interval			
k			

Problem

- A package of food states that the food should be stored at a temperature of 5 degrees Celsius and 20 degrees Celsius inclusive. The relationship between Celsius and Fahrenheit is
$C=\frac{5}{9}(F-32)$. What range of temperatures does this correspond to in Fahrenheit?

