

Math122 College Algebra

Professor Douglas J. Ryan

Ch1.3

Quadratic Equations

- A quadratic equation is of the form $ax^{2} + bx + c = 0$ where a, b, c are real numbers and $a \neq 0$
- We can solve quadratic equations by
 - 1. factoring
 - 2. using the zero product property AB = 0 if and only if A = 0 or B = 0

Solving Quadratic Equations by Factoring

• Solve the equation $3x^2 - 7x = -4$

• Check your solution.

Completing the Square

- Remember we solved equations of the form $(x \pm a)^2 = c$
- Completing the square

To make $x^2 + bx$ a perfect square, we add $\left(\frac{b}{2}\right)^2$

$$\gg x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$$

Problem

- For each of the following expressions, complete the square
- 1. $x^2 + 10x$

2. $x^2 - 3x$

3. $x^2 - \sqrt{3}x$

Problem

 Solve each equation by completing the square and check your results

1.
$$y^2 - 8y + 9 = 0$$

2.
$$4a^2 - 8a - 3 = 0$$

Quadratic Formula

- The roots of the quadratic equation $ax^{2} + bx + c = 0$ where $a \neq 0$ are $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
- What are the constants *a*, *b*, *and c* for each quadratic equation

1.
$$x^2 = 3 - 4x$$

2. $5y^2 = 4y$

Problem

• Find all solutions of each equation using the quadratic equation

$$1. \ \frac{x^2}{2} - \frac{5}{6}x - \frac{1}{3} = 0$$

2.
$$x^2 + 2x + 2 = 0$$

Discriminant

- The discriminant of $ax^2 + bx + c = 0$ 0 where $a \neq 0$ is $D = b^2 - 4ac$
- 1. if D > 0 then two real solutions exist
- 2. if D = 0 then exactly one real solution exists
- 3. if D < 0 then no real solution exists

Applications

Find two positive integers whose difference is
2 and whose product is 48.

Applications

 A rectangular bedroom is 7 ft longer than it is wide. If the area of the room is 228ft², what is the width of the room.