Math122 College Algebra

Professor Douglas J. Ryan

Ch1.3

Quadratic Equations

- A quadratic equation is of the form
$a x^{2}+b x+c=0$
where a, b, c are real numbers and $a \neq 0$
- We can solve quadratic equations by

1. factoring
2. using the zero product property

$$
A B=0 \text { if and only if } A=0 \text { or } B=0
$$

Solving Quadratic Equations by Factoring

- Solve the equation $3 x^{2}-7 x=-4$
- Check your solution.

Completing the Square

- Remember we solved equations of the form $(x \pm a)^{2}=c$
- Completing the square
$>$ To make $x^{2}+b x$ a perfect square, we add $\left(\frac{b}{2}\right)^{2}$
$>x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}$

Problem

- For each of the following expressions, complete the square

1. $x^{2}+10 x$
2. $x^{2}-3 x$
3. $x^{2}-\sqrt{3} x$

Problem

- Solve each equation by completing the square and check your results

1. $y^{2}-8 y+9=0$
2. $4 a^{2}-8 a-3=0$

Quadratic Formula

- The roots of the quadratic equation

$$
\begin{gathered}
a x^{2}+b x+c=0 \text { where } a \neq 0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

- What are the constants a, b, and c for each quadratic equation

1. $x^{2}=3-4 x$
2. $5 y^{2}=4 y$

Problem

- Find all solutions of each equation using the quadratic equation

$$
\text { 1. } \frac{x^{2}}{2}-\frac{5}{6} x-\frac{1}{3}=0
$$

2. $x^{2}+2 x+2=0$

Discriminant

- The discriminant of $a x^{2}+b x+c=$ 0 where $a \neq 0$ is $D=b^{2}-4 a c$

1. if $D>0$ then two real solutions exist
2. if $D=0$ then exactly one real solution exists
3. if $D<0$ then no real solution exists

Applications

- Find two positive integers whose difference is 2 and whose product is 48 .

Applications

- A rectangular bedroom is 7 ft longer than it is wide. If the area of the room is $228 \mathrm{ft}^{2}$, what is the width of the room.

