

Math122 College Algebra

Professor Douglas J. Ryan

Ch1.1 Equations

- Equations are a mathematical tool for solving problems in the real-world
- An equation such as 2 + 4 = 6 states that two mathematical expressions are equal
- Equations of interest contain variables such as 3x + 2 = 11
- *x* is an unknown in the above equation
- solutions (or roots) are values that make the equation true
- solving an equation is the process of finding the solutions of the equation

Equations

- Equivalent equations are two equations with the same solutions
- Solving an equation is the process of finding equivalent equations where the variable is isolated on one side of the equal sign
- Solve 3x + 2 = 11Answer $3x + 2 = 11 \iff 3x = 9 \iff x = 3$
- \Leftrightarrow means equivalent to

Properties of Equality

- 1. $A = B \iff A + C = B + C$ means we can produce an equivalent equation by adding the same value to both sides of an equation
- 2. $A = B \iff AC = BC \ (C \neq 0)$ means we can produce an equivalent equation by multiplying the same non-zero value to both sides of an equation

Linear Equations

- A linear equation in one variable is of the form ax + b = 0 where
 - *1. a* and *b* are real numbers
 - *2.* x is the variable

• Place an L by a linear equation and a N by a nonlinear equation for each equation below

1.
$$2x + 3 = 0$$

2. $y^2 + y = 1$ 3. $2a = \frac{1}{2}a + 5$

4.
$$\frac{-}{x} = 1$$

5. $\sqrt{y} - 2y = 0$

• Solve the following equations for *x* and check your results.

1.
$$4x - 3 = 2x - 6$$

2.
$$\frac{-2x}{3} = -12$$

3.
$$\frac{5x-20}{3x} = \frac{5}{9}$$

Equation with no Solution

• Solve the following equation for y and check your results.

1.
$$2 + \frac{5}{x-4} = \frac{x+1}{x-4}$$

Solving Power Equations

Linear equations have variables only to the first power

• What about equations that involve squares, cubes, ...

• Example $2y^2 - 4 = 0$

Solving Power Equations

• The power equation $X^n = a$ has the solution $X = \sqrt[n]{a}$ if n is odd $X = \pm \sqrt[n]{a}$ if n is even and $a \ge 0$

 Note: If n is even and a < 0, the equation has no real roots

• Solve each of the following equations. 1. $y^3 = 27$

2. $a^2 = 4$

3. $x^2 = -4$

• Solve each of the following equations and check your answer.

1.
$$y^2 - 3 = 0$$

2.
$$(y-3)^2 = 3$$

3.
$$(y+3)^2 = -3$$

Solve each of the following equations and check your answer.

1.
$$y^3 = -27$$

2.
$$16a^4 = 81$$

3. Solve
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$
 for R_1