Math122 College Algebra

Professor Douglas J. Ryan

Ch1.1

Equations

- Equations are a mathematical tool for solving problems in the real-world
- An equation such as $2+4=6$ states that two mathematical expressions are equal
- Equations of interest contain variables such as $3 x+2=11$
- x is an unknown in the above equation
- solutions (or roots) are values that make the equation true
- solving an equation is the process of finding the solutions of the equation

Equations

- Equivalent equations are two equations with the same solutions
- Solving an equation is the process of finding equivalent equations where the variable is isolated on one side of the equal sign
- Solve $3 x+2=11$

Answer $3 x+2=11 \Leftrightarrow 3 x=9 \Leftrightarrow x=3$

- \Leftrightarrow means equivalent to

Properties of Equality

1. $A=B \Leftrightarrow A+C=B+C$ means we can produce an equivalent equation by adding the same value to both sides of an equation
2. $A=B \Leftrightarrow A C=B C(C \neq 0)$ means we can produce an equivalent equation by multiplying the same non-zero value to both sides of an equation

Linear Equations

- A linear equation in one variable is of the form $a x+b=0$ where

1. a and b are real numbers
2. x is the variable

Problem

- Place an L by a linear equation and $\mathrm{a} N$ by a nonlinear equation for each equation below

1. $2 x+3=0$
2. $y^{2}+y=1$
3. $2 a=\frac{1}{2} a+5$
4. $\frac{3}{x}=1$
5. $\sqrt{y}-2 y=0$

Problem

- Solve the following equations for x and check your results.

1. $4 x-3=2 x-6$
2. $\frac{-2 x}{3}=-12$
3. $\frac{5 x-20}{3 x}=\frac{5}{9}$

Equation with no Solution

- Solve the following equation for y and check your results.

$$
\text { 1. } 2+\frac{5}{x-4}=\frac{x+1}{x-4}
$$

Solving Power Equations

- Linear equations have variables only to the first power
- What about equations that involve squares, cubes, ...
- Example $2 y^{2}-4=0$

Solving Power Equations

- The power equation $X^{n}=a$ has the solution

$$
\begin{aligned}
& X=\sqrt[n]{a} \text { if } n \text { is odd } \\
& X= \pm \sqrt[n]{a} \text { if } n \text { is even and } a \geq 0
\end{aligned}
$$

- Note: If n is even and $a<0$, the equation has no real roots

Problem

- Solve each of the following equations.

1. $y^{3}=27$
2. $a^{2}=4$
3. $x^{2}=-4$

Problem

- Solve each of the following equations and check your answer.

1. $y^{2}-3=0$
2. $(y-3)^{2}=3$
3. $(y+3)^{2}=-3$

Problem

- Solve each of the following equations and check your answer.

1. $y^{3}=-27$
2. $16 a^{4}=81$
3. Solve $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ for R_{1}
