

Math122 College Algebra

Professor Douglas J. Ryan

Rational Exponents and Radicals

- We now what 2³ means
- We now need to discuss such expressions as $8^{\frac{2}{3}}$
- $\sqrt{a} = b$ means $b^2 = a$ and $b \ge 0$

Define n^{th} Root

Define the nth root as follows
➤ Let n be any positive integer, the principal nthroot of a is ⁿ√a = b means bⁿ = a

Note1: if n is even, then we must have $a \ge 0$ and $b \ge 0$

Note2: The principal n^{th} root has the same sign as the original number

• Evaluate each of the following 1. $\sqrt[4]{16}$

2. $\sqrt[3]{-27}$

3.
$$\sqrt[2]{(-4)^2}$$

• T/F $\sqrt{a^2} = a$ for all a

Properties of n^{th} Roots

1. $\sqrt[n]{ab} =$

2. $\sqrt[n]{\frac{a}{b}} =$

3. $\sqrt[m]{\sqrt{n}}{\sqrt{a}} =$

Properties of n^{th} Roots

1. $\sqrt[n]{a^n} =$ if *n* is odd

2. $\sqrt[n]{a^n} =$ if *n* is even

• Simplify each of the following: 1. $\sqrt[4]{x^6}$

2.
$$\sqrt[4]{32a^8b^4}$$

3.
$$\sqrt{32} + \sqrt{200}$$

Rational Exponents

- An example of a rational exponent is $a^{\overline{3}}$
- Definition of Rational Exponents

For any reduced rational exponent m/n where m and n are integers and n > 0,

$$a^{\frac{m}{n}} = (\sqrt[n]{a})^{m}$$
$$OR$$
$$a^{\frac{m}{n}} = \sqrt[n]{a^{m}}$$

 \succ Note: If *n* is even, then a requirement is $a \ge 0$

• Evaluate each of the following:

1.
$$8^{\frac{1}{3}}$$

2.
$$8^{\frac{2}{3}}$$

$$3. 8^{-1}$$

• Simplify each of the following: 1. $a^{\frac{1}{2}}a^{\frac{1}{3}}$

2.
$$\frac{a^{\frac{1}{2}}a}{a^{\frac{3}{4}}}$$

3.
$$(2a^3b^4)^{\frac{3}{2}}$$

Simplify the following radicals and write your result as a rational exponent

$$1. \ \left(\sqrt{4x}\right)(3\sqrt[3]{x})$$

2.
$$\sqrt{x\sqrt{x}}$$

Rationalizing the Denominator

- Rationalizing the denominator is the process of eliminating all radicals in the denominator
- If the denominator is of the form \sqrt{a} then simply multiply numerator and denominator by \sqrt{a}

•
$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \cdot 1 = \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

Rationalizing the Denominator

• If the denominator is of the form $\sqrt[n]{a^m}$ and m < n then multiply the numerator and denominator by $\sqrt[n]{a^{n-m}}$

• What is $\sqrt[n]{a^m}\sqrt[n]{a^{n-m}}$

• Rationalize the denominator for

1.
$$\frac{3}{\sqrt{5}}$$

2. $\frac{2}{\sqrt[3]{3}}$

3.
$$\frac{1}{\sqrt[3]{3x^2}}$$