Math122 College Algebra

Professor Douglas J. Ryan

P. 5

Rational Exponents and Radicals

- We now what 2^{3} means
- We now need to discuss such expressions as $8^{\frac{2}{3}}$
- $\sqrt{a}=b$ means $b^{2}=a$ and $b \geq 0$

Define $n^{\text {th }}$ Root

- Define the $n^{t h}$ root as follows
$>$ Let n be any positive integer, the principal $n^{\text {th }}$ root of a is $\sqrt[n]{a}=b$ means $b^{n}=a$

Note1: if n is even, then we must have $a \geq 0$ and $b \geq 0$

Note2: The principal $n^{\text {th }}$ root has the same sign as the original number

Problem

- Evaluate each of the following

1. $\sqrt[4]{16}$
2. $\sqrt[3]{-27}$
3. $\sqrt[2]{(-4)^{2}}$

- T/F $\sqrt{a^{2}}=a$ for all a

Properties of $n^{\text {th }}$ Roots

1. $\sqrt[n]{a b}=$
2. $\sqrt[n]{\frac{a}{b}}=$
3. $\sqrt[m]{\sqrt[n]{a}}=$

Properties of $n^{\text {th }}$ Roots

$$
\text { 1. } \sqrt[n]{a^{n}}=\quad \text { if } n \text { is odd }
$$

2. $\sqrt[n]{a^{n}}=\quad$ if n is even

Problem

- Simplify each of the following:

1. $\sqrt[4]{x^{6}}$
2. $\sqrt[4]{32 a^{8} b^{4}}$
3. $\sqrt{32}+\sqrt{200}$

Rational Exponents

- An example of a rational exponent is $a^{\frac{2}{3}}$
- Definition of Rational Exponents
$>$ For any reduced rational exponent m / n where m and n are integers and $n>0$,

$$
\begin{gathered}
a^{\frac{m}{n}}=(\sqrt[n]{a})^{m} \\
O R \\
a^{\frac{m}{n}}=\sqrt[n]{a^{m}}
\end{gathered}
$$

$>$ Note: If n is even, then a requirement is $a \geq 0$

Problem

- Evaluate each of the following:

1. $8^{\frac{1}{3}}$
2. $8^{\frac{2}{3}}$
3. $8^{\frac{-1}{3}}$

Problem

- Simplify each of the following:

1. $a^{\frac{1}{2}} a^{\frac{1}{3}}$
2. $\frac{a^{\frac{1}{2}} a}{a^{\frac{3}{4}}}$
3. $\left(2 a^{3} b^{4}\right)^{\frac{3}{2}}$

Problem

- Simplify the following radicals and write your result as a rational exponent

$$
\text { 1. }(\sqrt{4 x})(3 \sqrt[3]{x})
$$

2. $\sqrt{x \sqrt{x}}$

Rationalizing the Denominator

- Rationalizing the denominator is the process of eliminating all radicals in the denominator
- If the denominator is of the form \sqrt{a} then simply multiply numerator and denominator by \sqrt{a}
- $\frac{1}{\sqrt{3}}=\frac{1}{\sqrt{3}} \cdot 1=\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3}$

Rationalizing the Denominator

- If the denominator is of the form $\sqrt[n]{a^{m}}$ and $m<n$ then multiply the numerator and denominator by $\sqrt[n]{a^{n-m}}$
- What is $\sqrt[n]{a^{m}} \sqrt[n]{a^{n-m}}$

Problem

- Rationalize the denominator for

1. $\frac{3}{\sqrt{5}}$
2. $\frac{2}{\sqrt[3]{3}}$
3. $\frac{1}{\sqrt[3]{3 x^{2}}}$
