

Math122 College Algebra

Professor Douglas J. Ryan

P.4 Integer Exponents

- If a is any real number and n is a positive integer, a^n is the $n^{\rm th}$ power of a
- $a^n = \underbrace{a \cdot a \cdot \cdots a}_{n \ factors \ of \ a}$ (a is the base; n is the exponent)
- Evaluate

1.
$$\left(\frac{1}{2}\right)^3$$

$$2. (-2)^4$$

$$3. -2^4$$

Zero and Negative Exponents

 Let a be any non-zero real number and n be a positive integer, then

1.
$$a^0 = 1$$

2.
$$a^{-n} = \frac{1}{a^n}$$

Evaluate

1.
$$\left(\frac{1}{2}\right)^0$$

$$2. 2^{-2}$$

Laws of Exponents

1.
$$a^m a^n =$$

$$2. \ \frac{a^m}{a^n} =$$

3.
$$(a^m)^n =$$

4.
$$(ab)^n =$$

$$5. \quad \left(\frac{a}{b}\right)^n =$$

Problem

Simplify each of the following:

1.
$$(3a^2b^3)(3ab^3)^2$$

$$2. \left(\frac{x}{y}\right)^2 \left(\frac{y^3x}{z}\right)^2$$

More Laws of Exponents

6.
$$\left(\frac{a}{b}\right)^{-n} =$$

$$7. \ \frac{a^{-n}}{b^{-m}} =$$

Problem

Eliminate negative exponents and simplify

1.
$$\frac{12xy^{-6}}{3x^{-3}y^2}$$

$$2. \left(\frac{x}{z^2}\right)^{-2}$$

Scientific Notation

- Scientific notation is often used in writing very large and very small numbers
- A positive number x written in scientific notation is
 - $rackleright > x = a \cdot 10^n$ where $1 \le a \le 10$ and n is an integer
- Write each of the following in scientific notation
- 1. 102,235
- 2. 0.000000543