

Math122 College Algebra

Professor Douglas J. Ryan

P.2

Real Numbers and Their Properties

- Define each of the following

 natural numbers
 - integers
 - rational numbers
 - irrational numbers

Real Numbers

- The natural numbers N, integers Z, rational numbers Q, and irrational numbers make up the set of all real numbers R
- The word number without qualifications means real
- Every real number has a decimal representation

Decimal Representations

• All rational numbers have a repeating decimal

a.
$$\frac{1}{2} = 0.5\overline{0}$$

b. $\frac{1}{3} = 0.\overline{3}$

- All irrational numbers do not have any repeating decimals
 - *a.* $\sqrt{2} = 1.41421356...$
 - *b.* $\pi = 3.14159...$

Operations on Real Numbers

- Evaluating arithmetic expressions
 - 1. Perform operations inside parentheses
 - a. innermost to outermost
 - b. treat the numerator and denominator of a fraction as being with parentheses
 - 2. Perform multiplications and divisions from left to right
 - 3. Perform additions and subtractions from left to right

Problem

• Evaluate
$$-2 + [4 \cdot 7 - 5(9 - \frac{8}{2})]$$

Properties of Real Numbers

- Commutative
 - Addition:
 - Multiplication:
- Associative
 - Addition
 - Multiplication:
- Distributive

Properties of Negative Numbers

1.
$$(-1)a = -a$$

2. $-(-a) = a$
3. $(-a)b = a(-b) = -(ab)$
4. $(-a)(-b) = ab$
5. $-(a + b) = -a - b$
6. $-(a - b) = -a + b = b - a$
True / False $-(x + y - z) = x - y + z$

Properties of Fractions

1. $\frac{a}{b} \cdot \frac{c}{d} =$ $2. \ \frac{a}{b} \div \frac{c}{d} =$ $3. \ \frac{a}{c} + \frac{b}{c} =$

Properties of Fractions

$$4. \ \frac{a}{b} + \frac{c}{d} =$$

5. $\frac{ac}{bc} =$

6. if
$$\frac{a}{b} = \frac{c}{d}$$
 then

Least Common Denominator (LCD)

- Evaluate $\frac{5}{36} + \frac{7}{120}$
- Answer #1: Use Property 4 from previous slide
- Answer #2:
 - Factor each denominator into prime factors $36 = 2^2 \cdot 3^2$; $120 = 2^3 \cdot 3^1 \cdot 5^1$
 - Form LCD taking highest power of each factor $2^3 \cdot 3^2 \cdot 5^1 = 360$

– Now what?

Other Terminology

- Addition & Subtraction
 - a) 0 is the additive identity as a + 0 = a
 - b) every $\mathbb{R} a$ has a negative -a such that

$$a + (-a) = 0$$

- Multiplication & Division
 - a) 1 is the multiplicative identity as $a \cdot 1 = a$
 - b) every nonzero $\mathbb{R} a$ has an inverse $\frac{1}{a}$ such that

$$a \cdot \left(\frac{1}{a}\right) = 1$$

Other Terminology

- Consider $\frac{a}{b}$
 - a) is the quotient of a and b
 - b) is the fraction a over b
 - c) a is the numerator
 - d) b is the denominator (or divisor)

Problem

• Evaluate without a calculator $1 + 2 + \frac{7}{5}$

$$1. \ 3 + \frac{-}{8} - \frac{-}{6}$$

2.
$$0.30\left(\frac{4}{3}+\frac{5}{8}\right)$$

$$3. \frac{\frac{1}{14}}{\frac{1}{6} \frac{1}{7}}$$