# Math122 College Algebra 

Professor Douglas J. Ryan

# P. 2 <br> <br> Real Numbers and Their Properties 

 <br> <br> Real Numbers and Their Properties}

- Define each of the following
- natural numbers
- integers
- rational numbers
- irrational numbers


## Real Numbers

- The natural numbers $\mathbb{N}$, integers $\mathbb{Z}$, rational numbers $\mathbb{Q}$, and irrational numbers make up the set of all real numbers $\mathbb{R}$
- The word number without qualifications means real
- Every real number has a decimal representation


## Decimal Representations

- All rational numbers have a repeating decimal

$$
\begin{aligned}
& \text { a. } \frac{1}{2}=0.5 \overline{0} \\
& \text { b. } \frac{1}{3}=0 . \overline{3}
\end{aligned}
$$

- All irrational numbers do not have any repeating decimals

$$
\begin{aligned}
& \text { a. } \quad \sqrt{2}=1.41421356 \ldots \\
& \text { b. } \pi=3.14159 \ldots
\end{aligned}
$$

## Operations on Real Numbers

- Evaluating arithmetic expressions

1. Perform operations inside parentheses
a. innermost to outermost
b. treat the numerator and denominator of a fraction as being with parentheses
2. Perform multiplications and divisions from left to right
3. Perform additions and subtractions from left to right

## Problem

- Evaluate $-2+\left[4 \cdot 7-5\left(9-\frac{8}{2}\right)\right.$


## Properties of Real Numbers

- Commutative
- Addition:
- Multiplication:
- Associative
- Addition
- Multiplication:
- Distributive


## Properties of Negative Numbers

1. $(-1) a=-a$
2. $-(-a)=a$
3. $(-a) b=a(-b)=-(a b)$
4. $(-a)(-b)=a b$
5. $-(a+b)=-a-b$
6. $-(a-b)=-a+b=b-a$

True / False $-(x+y-z)=x-y+z$

## Properties of Fractions

$$
\text { 1. } \frac{a}{b} \cdot \frac{c}{d}=
$$

$$
\text { 2. } \frac{a}{b} \div \frac{c}{d}=
$$

$$
\text { 3. } \frac{a}{c}+\frac{b}{c}=
$$

## Properties of Fractions

$$
\text { 4. } \frac{a}{b}+\frac{c}{d}=
$$

5. $\frac{a c}{b c}=$
6. if $\frac{a}{b}=\frac{c}{d}$ then

## Least Common Denominator (LCD)

- Evaluate $\frac{5}{36}+\frac{7}{120}$
- Answer \#1: Use Property 4 from previous slide
- Answer \#2:
- Factor each denominator into prime factors

$$
36=2^{2} \cdot 3^{2} ; 120=2^{3} \cdot 3^{1} \cdot 5^{1}
$$

- Form LCD taking highest power of each factor

$$
2^{3} \cdot 3^{2} \cdot 5^{1}=360
$$

- Now what?


## Other Terminology

- Addition \& Subtraction
a) 0 is the additive identity as $a+0=a$
b) every $\mathbb{R} a$ has a negative $-a$ such that

$$
a+(-a)=0
$$

- Multiplication \& Division
a) 1 is the multiplicative identity as $a \cdot 1=a$
b) every nonzero $\mathbb{R} a$ has an inverse $\frac{1}{a}$ such that

$$
a \cdot\left(\frac{1}{a}\right)=1
$$

## Other Terminology

- Consider $\frac{a}{b}$
a) is the quotient of $a$ and $b$
b) is the fraction $a$ over $b$
c) $a$ is the numerator
d) $b$ is the denominator (or divisor)


## Problem

- Evaluate without a calculator

$$
\text { 1. } 3+\frac{7}{8}-\frac{5}{6}
$$

2. $0.30\left(\frac{4}{3}+\frac{5}{8}\right)$
3. $\frac{\frac{1}{14}}{\frac{1}{6}-\frac{1}{7}}$
