

Paging

- Physical address space of a process can be noncontiguous;
 - Avoids external fragmentation
 - Avoids problem of varying sized memory chunks
- Divide physical memory into fixed-sized blocks called frames
 - Size is power of 2, between 512 bytes and 16 Mbytes
- Divide logical memory into blocks of same size called pages
- Keep track of all free frames
- Set up a page table to translate logical to physical addresses
- Backing store likewise split into pages
- Still have Internal fragmentation

- Address generated by CPU is divided into:
 - Page number (p) used as an index into a page table which contains base address of each page in physical memory
 - Page offset (*d*) combined with base address to define the physical memory address that is sent to the memory unit

page number	page offset
р	d
m -n	n

• For given logical address space 2^m and page size 2ⁿ

Paging Hardware

Paging Model of Logical and Physical Memory

Silberschatz, Galvin and Gagne ©2013

Paging Example

n=2 and *m*=4 32-byte memory and 4-byte pages

Operating System Concepts – 9th Edition

Paging (Cont.)

- Calculating internal fragmentation
 - Page size = 2,048 bytes
 - Process size = 72,766 bytes
 - 35 pages + 1,086 bytes
 - Internal fragmentation of 2,048 1,086 = 962 bytes
 - Worst case fragmentation = 1 frame 1 byte
 - On average fragmentation = 1 / 2 frame size
 - But each page table entry takes memory to track

Free Frames

Silberschatz, Galvin and Gagne ©2013

- Page table is kept in main memory
- Page-table base register (PTBR) points to the page table
- Page-table length register (PTLR) indicates size of the page table
- In this scheme every data/instruction access requires two memory accesses
 - One for the page table and one for the data / instruction
- The two memory access problem can be solved by the use of a special fast-lookup hardware cache called associative memory or translation look-aside buffers (TLBs)

