
8.1 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Dynamic relocation using a relocation register

 Routine is not loaded until it is

called

 Better memory-space utilization;

unused routine is never loaded

 All routines kept on disk in

relocatable load format

 Useful when large amounts of

code are needed to handle

infrequently occurring cases

 No special support from the

operating system is required

 Implemented through program

design

 OS can help by providing libraries

to implement dynamic loading

8.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Dynamic Linking

 Static linking – system libraries and program code combined by

the loader into the binary program image

 Dynamic linking – linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate

memory-resident library routine

 Stub replaces itself with the address of the routine, and executes

the routine

 Operating system checks if routine is in processes’ memory

address

 If not in address space, add to address space

 Dynamic linking is particularly useful for libraries

 System also known as shared libraries

8.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Swapping

 A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for continued
execution

 Total physical memory space of processes can exceed
physical memory

 Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped

 System maintains a ready queue of ready-to-run processes
which have memory images on disk

8.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Context Switch Time including Swapping

 If next processes to be put on CPU is not in memory, need to

swap out a process and swap in target process

 Context switch time can then be very high

 100MB process swapping to hard disk with transfer rate of

50MB/sec

 Swap out time of 2000 ms

 Plus swap in of same sized process

 Total context switch swapping component time of 4000ms

(4 seconds)

8.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Swapping on Mobile Systems

 Not typically supported

 Flash memory based

 Small amount of space

 Limited number of write cycles

 Poor throughput between flash memory and CPU on mobile

platform

 Instead use other methods to free memory if low

 iOS asks apps to voluntarily relinquish allocated memory

 Read-only data thrown out and reloaded from flash if needed

 Failure to free can result in termination

 Android terminates apps if low free memory, but first writes

application state to flash for fast restart

8.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Contiguous Allocation

 Main memory must support both OS and user processes

 Limited resource, must allocate efficiently

 Contiguous allocation is one early method

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory with

interrupt vector

 User processes then held in high memory

 Each process contained in single contiguous section of

memory

8.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multiple-partition allocation

 Multiple-partition allocation

 Degree of multiprogramming limited by number of partitions

 Variable-partition sizes for efficiency (sized to a given process’ needs)

 Hole – block of available memory; holes of various size are scattered

throughout memory

 When a process arrives, it is allocated memory from a hole large enough to

accommodate it

 Process exiting frees its partition, adjacent free partitions combined

 Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

8.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Dynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough; must
search entire list, unless ordered by size

 Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also search entire list

 Produces the largest leftover hole

How to satisfy a request of size n from a list of free holes?

First-fit and best-fit better than worst-fit in terms of speed and storage

utilization

8.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Fragmentation

 External Fragmentation – total memory space exists to

satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be slightly

larger than requested memory; this size difference is memory

internal to a partition, but not being used

8.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Segmentation

 Memory-management scheme that supports user view of memory

 A program is a collection of segments

 A segment is a logical unit such as:

 main program

 procedure

 function

 method

 object

 local variables, global variables

 common block

 stack

 symbol table

 arrays

8.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

User’s View of a Program

8.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

8.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Segmentation Architecture

 Logical address consists of a two tuple:

 <segment-number, offset>,

 Segment table – maps two-dimensional physical addresses; each

table entry has:

 base – contains the starting physical address where the

segments reside in memory

 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment

table’s location in memory

 Segment-table length register (STLR) indicates number of

segments used by a program;

 segment number s is legal if s < STLR

8.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Segmentation Hardware

8.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Segmentation Architecture (Cont.)

