
7.1 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Deadlock Prevention

 Mutual Exclusion

 not required for sharable resources (e.g., read-only

files)

 cannot prevent deadlock by denying mutual exclusion

because some resources are intrinsically nonsharable

(e.g. mutex lock)

Deadlock can be prevented if 1 of the 4 conditions cannot hold

7.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Deadlock Prevention

 Hold and Wait – must guarantee that whenever a process

requests a resource, it does not hold any other resources

 Require process to request and be allocated ALL of

its resources before it begins execution (e.g. DVD

drive, disk file, printer)

 A process having no resources can request some

to make progress and then release them (DVD

drive and disk file; then release; then disk file and

printer; then release)

 Low resource utilization; starvation possible

Deadlock can be prevented if 1 of the 4 conditions cannot hold

7.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Deadlock Prevention

 No Preemption –

 If a process that is holding some resources requests

another resource that cannot be immediately allocated to

it, then all resources currently being held are released

 Preempted resources are added to the list of resources

for which the process is waiting

 Process will be restarted only when it can regain its old

resources, as well as the new ones that it is requesting

 Circular Wait – impose a total ordering of all resource types,

and require that each process requests resources in an

increasing order of enumeration

7.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Deadlock Example

/* thread one runs in this function */

void *do_work_one(void *param)

{

 pthread_mutex_lock(&first_mutex);

 pthread_mutex_lock(&second_mutex);

 /** * Do some work */

 pthread_mutex_unlock(&second_mutex);

 pthread_mutex_unlock(&first_mutex);

 pthread_exit(0);

}

/* thread two runs in this function */

void *do_work_two(void *param)

{

 pthread_mutex_lock(&second_mutex);

 pthread_mutex_lock(&first_mutex);

 /** * Do some work */

 pthread_mutex_unlock(&first_mutex);

 pthread_mutex_unlock(&second_mutex);

 pthread_exit(0);

}

7.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Deadlock Example with Lock Ordering

void transaction(Account from, Account to, double amount)

{

 mutex lock1, lock2;

 lock1 = get_lock(from);

 lock2 = get_lock(to);

 acquire(lock1);

 acquire(lock2);

 withdraw(from, amount);

 deposit(to, amount);

 release(lock2);

 release(lock1);

}

Thread 1: transaction (checking, savings, 25.0)

Thread 2: transaction (savings, checking, 50.0)

7.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Deadlock Avoidance

 Simplest and most useful model requires that each process

declare the maximum number of resources of each type

that it may need

 The deadlock-avoidance algorithm dynamically examines

the resource-allocation state to ensure that there can never

be a circular-wait condition

 Resource-allocation state is defined by the number of

available and allocated resources, and the maximum

demands of the processes

Requires that the system has some additional information

available

7.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Safe State

 When a process requests an available resource, system must

decide if immediate allocation leaves the system in a safe state

 System is in safe state if there exists a sequence <P1, P2, …, Pn>

of ALL the processes in the systems such that for each Pi, the

resources that Pi can still request can be satisfied by currently

available resources + resources held by all the Pj, with j < i

 That is:

 If Pi resource needs are not immediately available, then Pi can

wait until all Pj have finished

 When all Pj is finished, Pi can obtain needed resources,

execute, return allocated resources, and terminate

 When Pi terminates, Pi +1 can obtain its needed resources, and

so on

7.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Basic Facts

 If a system is in safe state  no deadlocks

 If a system is in unsafe state  possibility of deadlock

 Avoidance  ensure that a system will never enter an

unsafe state.

7.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Avoidance Algorithms

 Single instance of a resource type

 Use a resource-allocation graph

 Multiple instances of a resource type

 Use the banker’s algorithm

7.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Resource-Allocation Graph Scheme

 Claim edge Pi  Rj indicated that process Pi may request

resource Rj; represented by a dashed line

 Claim edge converts to request edge when a process requests

a resource

 Request edge converted to an assignment edge when the

resource is allocated to the process

 When a resource is released by a process, assignment edge

reconverts to a claim edge

 Resources must be claimed a priori in the system (i.e. before

process Pi starts executing, all its claim edges must already

appear in the resource-allocation graph.

7.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Resource-Allocation Graph

7.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Unsafe State In Resource-Allocation Graph

7.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Resource-Allocation Graph Algorithm

 Suppose that process Pi requests a resource Rj

 The request can be granted only if converting the

request edge to an assignment edge does not result

in the formation of a cycle in the resource allocation

graph

7.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Banker’s Algorithm

 Multiple instances

 Each process must a priori claim maximum use

 When a process requests a resource it may have to wait

 When a process gets all its resources it must return them in a

finite amount of time

