g T Deadlock Prevention

Deadlock can be prevented if 1 of the 4 conditions cannot hold

® Mutual Exclusion

e not required for sharable resources (e.g., read-only
files)

e cannot prevent deadlock by denying mutual exclusion
because some resources are intrinsically nonsharable
(e.g. mutex lock)

Operating System Concepts — 9th Edition 7.1 Silberschatz, Galvin and Gagne ©2013

S Deadlock Prevention

Deadlock can be prevented if 1 of the 4 conditions cannot hold

® Hold and Wait — must guarantee that whenever a process
requests a resource, it does not hold any other resources

» Require process to request and be allocated ALL of
its resources before it begins execution (e.g. DVD
drive, disk file, printer)

» A process having no resources can request some
to make progress and then release them (DVD
drive and disk file; then release; then disk file and
printer; then release)

e Low resource utilization; starvation possible

\\

A

o

Operating System Concepts — 9t Edition 7.2 Silberschatz, Galvin and Gagne ©2013

2,

=

(iy

S Deadlock Prevention

® No Preemption —

e If a process that is holding some resources requests
another resource that cannot be immediately allocated to
it, then all resources currently being held are released

e Preempted resources are added to the list of resources
for which the process is waiting

e Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting

m Circular Wait — impose a total ordering of all resource types,
and require that each process requests resources in an
iIncreasing order of enumeration

AR
(74)‘v\(,

A

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 7.3

=

P> Deadlock Example

i
e

/* thread one runs 1in this function */

volid *do work one(void *param)
{

pthread mutex lock(&first mutex);
pthread mutex lock(&second mutex) ;

/** * Do some work */
pthread mutex unlock(&second mutex);

pthread mutex unlock(&first mutex);
pthread exit (0);

}

/* thread two runs in this function */

void *do work two(void *param)
{

pthread mutex lock(&second mutex);
pthread mutex lock(&first mutex);

/** * Do some work */
pthread mutex unlock (&first mutex);

pthread mutex unlock (&second mutex);

pthread exit (0);

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 7.4

«g%’ Deadlock Example with Lock Ordering

void transaction (Account from, Account to, double amount)
{
mutex lockl, lockZ2;
lockl = get lock(from);
lockZ2 = get lock(to);
acquire (lockl) ;
acquire (lock2);
withdraw (from, amount) ;
deposit (to, amount);
release (lock?2) ;
release (lockl) ;

}

Thread 1: transaction (checking, savings, 25.0)

Thread 2: transaction (savings, checking, 50.0)

Operating System Concepts — 9th Edition 7.5 Silberschatz, Galvin and Gagne ©2013

)

R
T, l

_a5

g5 Deadlock Avoidance

Requires that the system has some additional information
available

m Simplest and most useful model requires that each process
declare the maximum number of resources of each type
that it may need

® The deadlock-avoidance algorithm dynamically examines
the resource-allocation state to ensure that there can never
be a circular-wait condition

B Resource-allocation state is defined by the number of
available and allocated resources, and the maximum
demands of the processes

\\

A

o

Operating System Concepts — 9t Edition 7.6 Silberschatz, Galvin and Gagne ©2013

S5 Safe State

®m When a process requests an available resource, system must
decide if immediate allocation leaves the system in a safe state

m System is in safe state if there exists a sequence <P, P,, ..., P>
of ALL the processes in the systems such that for each P,, the
resources that P, can still request can be satisfied by currently
available resources + resources held by all the P;, with | <1

B Thatis;

e If P, resource needs are not immediately available, then P; can
wait until all P; have finished

e When all P is finished, P; can obtain needed resources,
execute, return allocated resources, and terminate

e When P, terminates, P, ,, can obtain its needed resources, and
SO on

S\

<A

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 7.7

o
7,

G5 Basic Facts

m |f a system is in safe state = no deadlocks
m If a system is in unsafe state = possibility of deadlock

® Avoidance = ensure that a system will never enter an
unsafe state.

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 7.8

g5 Avolidance Algorithms

‘4

m Single instance of a resource type
e Use aresource-allocation graph

® Multiple instances of a resource type
e Use the banker’ s algorithm

Sl
ST :’&\ \

vk “v »
A A%

Operating System Concepts — 9th Edition 7.9 Silberschatz, Galvin and Gagne ©2013

=
o

~$»/ Resource-Allocation Graph Scheme

m Claim edge P; — R;indicated that process P; may request
resource R;; represented by a dashed line

® Claim edge converts to request edge when a process requests
a resource

B Request edge converted to an assignment edge when the
resource is allocated to the process

® When a resource is released by a process, assignment edge
reconverts to a claim edge

m Resources must be claimed a priori in the system (i.e. before
process P; starts executing, all its claim edges must already
appear in the resource-allocation graph.

T
SN
P/ AN

Operating System Concepts — 9t Edition 7.10 Silberschatz, Galvin and Gagne ©2013

&rz;vr Resource-Allocation Graph

A,

Operating System Concepts — g Edition 711 Silberschatz, Galvin and Gagne ©2013

@}"—’ﬁ Unsafe State In Resource-Allocation Graph

A,

Operating System Concepts — 9t Edition 7.12 Silberschatz, Galvin and Gagne ©2013

4
Y,

-7 Resource-Allocation Graph Algorithm

y

B Suppose that process P, requests a resource R;

m The request can be granted only if converting the
request edge to an assignment edge does not result
in the formation of a cycle in the resource allocation
graph

Operating System Concepts — 9t Edition 7.13 Silberschatz, Galvin and Gagne ©2013

s Banker’s Algorithm

® Multiple instances
® Each process must a priori claim maximum use
B When a process requests a resource it may have to wait

® When a process gets all its resources it must return them in a
finite amount of time

‘\A
\“n“
5 ‘& :
W
A e

Silberschatz, Galvin and Gagne ©2013

Operating System Concepts — 9t" Edition 7.14

