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Deadlock Prevention 

 Mutual Exclusion 

 not required for sharable resources (e.g., read-only 

files) 

 cannot prevent deadlock by denying mutual exclusion 

because some resources are intrinsically nonsharable 

(e.g. mutex lock) 

Deadlock can be prevented if 1 of the 4 conditions cannot hold 
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Deadlock Prevention 

 Hold and Wait – must guarantee that whenever a process 

requests a resource, it does not hold any other resources 

 Require process to request and be allocated ALL of 

its resources before it begins execution (e.g. DVD 

drive, disk file, printer) 

 A process having no resources can request some 

to make progress and then release them (DVD 

drive and disk file; then release; then disk file and 

printer; then release) 

 Low resource utilization; starvation possible 

Deadlock can be prevented if 1 of the 4 conditions cannot hold 
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Deadlock Prevention 

 No Preemption – 

 If a process that is holding some resources requests 

another resource that cannot be immediately allocated to 

it, then all resources currently being held are released 

 Preempted resources are added to the list of resources 

for which the process is waiting 

 Process will be restarted only when it can regain its old 

resources, as well as the new ones that it is requesting 

 

 

 Circular Wait – impose a total ordering of all resource types, 

and require that each process requests resources in an 

increasing order of enumeration 
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Deadlock Example 

/* thread one runs in this function */  

void *do_work_one(void *param) 

{  

   pthread_mutex_lock(&first_mutex);  

   pthread_mutex_lock(&second_mutex);  

   /** * Do some work */ 

   pthread_mutex_unlock(&second_mutex);  

   pthread_mutex_unlock(&first_mutex);  

   pthread_exit(0);  

}  

/* thread two runs in this function */  

void *do_work_two(void *param) 

{  

   pthread_mutex_lock(&second_mutex);  

   pthread_mutex_lock(&first_mutex);  

   /** * Do some work */ 

   pthread_mutex_unlock(&first_mutex);  

   pthread_mutex_unlock(&second_mutex);  

   pthread_exit(0);  

}  
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Deadlock Example with Lock Ordering 

void transaction(Account from, Account to, double amount)  

{  

   mutex lock1, lock2;  

   lock1 = get_lock(from);  

   lock2 = get_lock(to);  

   acquire(lock1);  

      acquire(lock2);  

         withdraw(from, amount);  

         deposit(to, amount);  

      release(lock2);  

   release(lock1);  

}  

Thread 1: transaction (checking, savings, 25.0) 

Thread 2: transaction (savings, checking, 50.0) 
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Deadlock Avoidance 

 Simplest and most useful model requires that each process 

declare the maximum number of resources of each type 

that it may need 

 The deadlock-avoidance algorithm dynamically examines 

the resource-allocation state to ensure that there can never 

be a circular-wait condition 

 Resource-allocation state is defined by the number of 

available and allocated resources, and the maximum 

demands of the processes 

Requires that the system has some additional information  

available 
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Safe State 

 When a process requests an available resource, system must 

decide if immediate allocation leaves the system in a safe state 

 System is in safe state if there exists a sequence <P1, P2, …, Pn> 

of ALL the  processes  in the systems such that  for each Pi, the 

resources that Pi can still request can be satisfied by currently 

available resources + resources held by all the Pj, with j < i 

 That is: 

 If Pi resource needs are not immediately available, then Pi can 

wait until all Pj have finished 

 When all Pj is finished, Pi can obtain needed resources, 

execute, return allocated resources, and terminate 

 When Pi terminates, Pi +1 can obtain its needed resources, and 

so on  
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Basic Facts 

 If a system is in safe state  no deadlocks 

 

 If a system is in unsafe state  possibility of deadlock 

 

 Avoidance  ensure that a system will never enter an 

unsafe state. 
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Avoidance Algorithms 

 Single instance of a resource type 

 Use a resource-allocation graph 

 

 Multiple instances of a resource type 

  Use the banker’s algorithm 
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Resource-Allocation Graph Scheme 

 Claim edge Pi  Rj indicated that process Pi may request 

resource Rj; represented by a dashed line 

 Claim edge converts to request edge when a process requests 

a resource 

 Request edge converted to an assignment edge when the  

resource is allocated to the process 

 When a resource is released by a process, assignment edge 

reconverts to a claim edge 

 Resources must be claimed a priori in the system (i.e. before 

process Pi  starts executing, all its claim edges must already 

appear in the resource-allocation graph. 
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Resource-Allocation Graph 
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Unsafe State In Resource-Allocation Graph 
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Resource-Allocation Graph Algorithm 

 Suppose that process Pi requests a resource Rj 

 

 The request can be granted only if converting the 

request edge to an assignment edge does not result 

in the formation of a cycle in the resource allocation 

graph 
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Banker’s Algorithm 

 Multiple instances 

 

 Each process must a priori claim maximum use 

 

 When a process requests a resource it may have to wait   

 

 When a process gets all its resources it must return them in a 

finite amount of time 


