
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter 7: Deadlocks

7.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter 7: Deadlocks

 System Model

 Deadlock Characterization

 Methods for Handling Deadlocks

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

 Recovery from Deadlock

7.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Chapter Objectives

 To develop a description of deadlocks, which prevent

sets of concurrent processes from completing their

tasks

 To present a number of different methods for

preventing or avoiding deadlocks in a computer

system

7.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

System Model

 System consists of resources

 Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices (printers, DVD

writers, …)

 Each resource type Ri has Wi instances.

 Each process utilizes a resource as follows:

 request

 use

 release

7.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Deadlock Characterization

 Mutual exclusion: only one process at a time can use a

resource

 Hold and wait: a process holding at least one resource is

waiting to acquire additional resources held by other

processes

 No preemption: a resource can be released only voluntarily

by the process holding it, after that process has completed

its task

 Circular wait: there exists a set {P0, P1, …, Pn} of waiting

processes such that P0 is waiting for a resource that is held

by P1, P1 is waiting for a resource that is held by P2, …, Pn–1

is waiting for a resource that is held by Pn, and Pn is waiting

for a resource that is held by P0.

 Notice: Circular wait implies Hold and wait implying the four

conditions are not totally independent

Deadlock can arise if four conditions hold simultaneously.

7.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Deadlock with Mutex Locks

 Where have we seen this?

 How does deadlock occur?

7.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Resource-Allocation Graph

 Process

 Resource Type with 4 instances

 Pi requests instance of Rj

 Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

7.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Resource-Allocation Graph

 V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting of all the processes

in the system

 R = {R1, R2, …, Rm}, the set consisting of all resource

types in the system

 E = {P1 R1, R1 P2 }

 request edge – directed edge Pi Rj

 assignment edge – directed edge Rj Pi

A set of vertices V and a set of edges E.

What is the meaning of E?

Draw the resource-allocation graph.

7.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of a Resource Allocation Graph

Is this an example of deadlock? Why or why not?

7.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Deadlock or no Deadlock?

Explain

7.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Deadlock or no Deadlock?

Explain

7.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Basic Facts

 If graph contains no cycles no deadlock

 If graph contains a cycle

 if only one instance per resource type, then deadlock

 if several instances per resource type, possibility of

deadlock

7.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Methods for Handling Deadlocks

 Ensure that the system will never enter a deadlock

state:

 Deadlock prevention - ensure one of the necessary

conditions cannot hold

 Deadlock avoidence - give OS advanced info

regarding resources a process will request to make

an informed decision

 Allow the system to enter a deadlock state and then

recover

 Ignore the problem and pretend that deadlocks never

occur in the system; used by most operating systems,

including UNIX

