
6.1 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of Shortest-remaining-time-first

i.e. Preemptive SJF

 Now we add the concepts of varying arrival times and preemption to

the analysis

 ProcessAarri Arrival TimeT Burst Time

 P1 0 8

 P2 1 4

 P3 2 9

 P4 3 5

 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5

msec

P
4

0 1 26

P
1

P
2

10

P
3

P
1

5 17

6.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority

(smallest integer highest priority)

 Can be preemptive

 Can be nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted

next CPU burst time

 Problem Starvation – low priority processes may never execute

 Solution Aging – as time progresses increase the priority of the

process

 There is a rumor that when the IBM 7094 at MIT was shut down in

1973 that a low-priority process from 1967 had not yet been run.

6.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of Priority Scheduling

 ProcessAarri Burst Time(ms)T Priority

 P1 10 3

 P2 1 1

 P3 2 4

 P4 1 5

 P5 5 2

 Priority scheduling Gantt Chart assuming all arrive at time 0

 Average waiting time = (0+1+6+16+18)/5 = 8.2 msec

6.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum q),

usually 10-100 milliseconds. After this time has elapsed, the

process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time

quantum is q, then each process gets 1/n of the CPU time in

chunks of at most q time units at once. No process waits more

than (n-1)q time units.

 Timer interrupts every quantum to schedule next process

 Performance

 q large FIFO

 q small q must be large with respect to context switch,

otherwise overhead is too high

6.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of RR with Time Quantum = 4

 Process Burst Time

 P1 24

 P2 3

 P3 3

 The Gantt chart assuming all processes arrive at time 0 is:

 Typically, higher average turnaround than SJF, but better
response

 q should be large compared to context switch time

 q usually 10ms to 100ms, context switch < 10 µsec

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

6.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Time Quantum and Context Switch Time

6.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Turnaround Time Varies With The Time Quantum

80% of CPU bursts
should be shorter than q

Given a time quantun of 1, where does 11.0 come
from?

6.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multilevel Queue

 Ready queue is partitioned into separate queues, eg:

 foreground (interactive)

 background (batch)

 Process permanently in a given queue

 Each queue has its own scheduling algorithm:

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues:

 Fixed priority scheduling; (i.e., serve all from foreground then

from background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to

foreground in RR

 20% to background in FCFS

6.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multilevel Queue Scheduling

6.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multilevel Feedback Queue

 A process can move between the various queues; aging can be

implemented this way

 Multilevel-feedback-queue scheduler defined by the following

parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter

when that process needs service

6.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of Multilevel Feedback Queue

 Three queues:

 Q0 – RR with time quantum 8

milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is

served FCFS

 When it gains CPU, job receives 8

milliseconds

 If it does not finish in 8

milliseconds, job is moved to

queue Q1

 At Q1 job is again served FCFS and

receives 16 additional milliseconds

 If it still does not complete, it is

preempted and moved to queue Q2

6.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Thread Scheduling

 Distinction between user-level and kernel-level threads

 When threads are supported, threads are scheduled, not processes

 Many-to-one and many-to-many models, thread library schedules

user-level threads to run on LWP

 Known as process-contention scope (PCS) since scheduling

competition is within the process

 Typically done via priority set by programmer

 Kernel thread scheduled onto available CPU is system-contention

scope (SCS) – competition among all threads in system

6.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthread Scheduling

 API allows specifying either PCS or SCS during thread creation

 PTHREAD_SCOPE_PROCESS schedules threads using

PCS scheduling

 PTHREAD_SCOPE_SYSTEM schedules threads using

SCS scheduling

 Can be limited by OS – Linux and Mac OS X only allow

PTHREAD_SCOPE_SYSTEM

6.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthread Scheduling API
#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[]) {

 int i, scope;

 pthread_t tid[NUM THREADS];

 pthread_attr_t attr;

 /* get the default attributes */

 pthread_attr_init(&attr);

 /* first inquire on the current scope */

 if (pthread_attr_getscope(&attr, &scope) != 0)

 fprintf(stderr, "Unable to get scheduling scope\n");

 else {

 if (scope == PTHREAD_SCOPE_PROCESS)

 printf("PTHREAD_SCOPE_PROCESS");

 else if (scope == PTHREAD_SCOPE_SYSTEM)

 printf("PTHREAD_SCOPE_SYSTEM");

 else

 fprintf(stderr, "Illegal scope value.\n");

 }

6.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthread Scheduling API

 /* set the scheduling algorithm to PCS or SCS */

 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

 /* create the threads */

 for (i = 0; i < NUM_THREADS; i++)

 pthread_create(&tid[i],&attr,runner,NULL);

 /* now join on each thread */

 for (i = 0; i < NUM_THREADS; i++)

 pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

 /* do some work ... */

 pthread_exit(0);

}

