
6.1 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of Shortest-remaining-time-first

i.e. Preemptive SJF

 Now we add the concepts of varying arrival times and preemption to

the analysis

 ProcessAarri Arrival TimeT Burst Time

 P1 0 8

 P2 1 4

 P3 2 9

 P4 3 5

 Preemptive SJF Gantt Chart

 Average waiting time = [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5

msec

P
4

0 1 26

P
1

P
2

10

P
3

P
1

5 17

6.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority

(smallest integer  highest priority)

 Can be preemptive

 Can be nonpreemptive

 SJF is priority scheduling where priority is the inverse of predicted

next CPU burst time

 Problem  Starvation – low priority processes may never execute

 Solution  Aging – as time progresses increase the priority of the

process

 There is a rumor that when the IBM 7094 at MIT was shut down in

1973 that a low-priority process from 1967 had not yet been run.

6.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of Priority Scheduling

 ProcessAarri Burst Time(ms)T Priority

 P1 10 3

 P2 1 1

 P3 2 4

 P4 1 5

 P5 5 2

 Priority scheduling Gantt Chart assuming all arrive at time 0

 Average waiting time = (0+1+6+16+18)/5 = 8.2 msec

6.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum q),

usually 10-100 milliseconds. After this time has elapsed, the

process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time

quantum is q, then each process gets 1/n of the CPU time in

chunks of at most q time units at once. No process waits more

than (n-1)q time units.

 Timer interrupts every quantum to schedule next process

 Performance

 q large  FIFO

 q small  q must be large with respect to context switch,

otherwise overhead is too high

6.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of RR with Time Quantum = 4

 Process Burst Time

 P1 24

 P2 3

 P3 3

 The Gantt chart assuming all processes arrive at time 0 is:

 Typically, higher average turnaround than SJF, but better
response

 q should be large compared to context switch time

 q usually 10ms to 100ms, context switch < 10 µsec

P P P
1 1 1

0 18 3026144 7 10 22

P
2

P
3

P
1

P
1

P
1

6.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Time Quantum and Context Switch Time

6.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Turnaround Time Varies With The Time Quantum

80% of CPU bursts
should be shorter than q

Given a time quantun of 1, where does 11.0 come
from?

6.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multilevel Queue

 Ready queue is partitioned into separate queues, eg:

 foreground (interactive)

 background (batch)

 Process permanently in a given queue

 Each queue has its own scheduling algorithm:

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues:

 Fixed priority scheduling; (i.e., serve all from foreground then

from background). Possibility of starvation.

 Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to

foreground in RR

 20% to background in FCFS

6.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multilevel Queue Scheduling

6.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Multilevel Feedback Queue

 A process can move between the various queues; aging can be

implemented this way

 Multilevel-feedback-queue scheduler defined by the following

parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

 method used to determine which queue a process will enter

when that process needs service

6.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Example of Multilevel Feedback Queue

 Three queues:

 Q0 – RR with time quantum 8

milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is

served FCFS

 When it gains CPU, job receives 8

milliseconds

 If it does not finish in 8

milliseconds, job is moved to

queue Q1

 At Q1 job is again served FCFS and

receives 16 additional milliseconds

 If it still does not complete, it is

preempted and moved to queue Q2

6.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Thread Scheduling

 Distinction between user-level and kernel-level threads

 When threads are supported, threads are scheduled, not processes

 Many-to-one and many-to-many models, thread library schedules

user-level threads to run on LWP

 Known as process-contention scope (PCS) since scheduling

competition is within the process

 Typically done via priority set by programmer

 Kernel thread scheduled onto available CPU is system-contention

scope (SCS) – competition among all threads in system

6.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthread Scheduling

 API allows specifying either PCS or SCS during thread creation

 PTHREAD_SCOPE_PROCESS schedules threads using

PCS scheduling

 PTHREAD_SCOPE_SYSTEM schedules threads using

SCS scheduling

 Can be limited by OS – Linux and Mac OS X only allow

PTHREAD_SCOPE_SYSTEM

6.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthread Scheduling API
#include <pthread.h>

#include <stdio.h>

#define NUM_THREADS 5

int main(int argc, char *argv[]) {

 int i, scope;

 pthread_t tid[NUM THREADS];

 pthread_attr_t attr;

 /* get the default attributes */

 pthread_attr_init(&attr);

 /* first inquire on the current scope */

 if (pthread_attr_getscope(&attr, &scope) != 0)

 fprintf(stderr, "Unable to get scheduling scope\n");

 else {

 if (scope == PTHREAD_SCOPE_PROCESS)

 printf("PTHREAD_SCOPE_PROCESS");

 else if (scope == PTHREAD_SCOPE_SYSTEM)

 printf("PTHREAD_SCOPE_SYSTEM");

 else

 fprintf(stderr, "Illegal scope value.\n");

 }

6.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9th Edition

Pthread Scheduling API

 /* set the scheduling algorithm to PCS or SCS */

 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);

 /* create the threads */

 for (i = 0; i < NUM_THREADS; i++)

 pthread_create(&tid[i],&attr,runner,NULL);

 /* now join on each thread */

 for (i = 0; i < NUM_THREADS; i++)

 pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

 /* do some work ... */

 pthread_exit(0);

}

