
6.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Classical Problems of Synchronization

 Quick Review

 mutex

 semaphore

 binary

 counting

 Bounded-Buffer Problem (Producer-consumer)

 Audio Player

 Readers and Writers Problem

 Banking system: read acct balances versus update balances

 Dining-Philosophers Problem

 Set of processes needing to lock multiple resources

 Disk and Tape (backup)

 Travel reservation: hotel, airline, car rental databases

6.2 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Classical Problems of Synchronization

http://www.cs.ucr.edu/~harsha/teaching/Winter2012/CS153/lectures/lec6.pdf

6.3 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Bounded-Buffer Problem

 N buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value N.

6.4 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

 The structure of the producer process

 do {

 // produce an item in nextp

 wait (empty);

 wait (mutex);

 // add the item to the buffer

 signal (mutex);

 signal (full);

 } while (TRUE);

6.5 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Bounded Buffer Problem (Cont.)

 The structure of the consumer process

 do {

 wait (full);

 wait (mutex);

 // remove an item from buffer to nextc

 signal (mutex);

 signal (empty);

 // consume the item in nextc

 } while (TRUE);

6.6 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Readers-Writers Problem

 A data set is shared among a number of concurrent processes

 Readers – only read the data set; they do not perform any updates

 Writers – can both read and write

 Problem – allow multiple readers to read at the same time. Only one single

writer can access the shared data at the same time

 Shared Data

 Data set

 Integer readcount initialized to 0 // number of readers

 Semaphore mutex initialized to 1 // mutual exclusion to readcount

 Semaphore wrt initialized to 1 // exclusive reader or writer

6.7 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)

 The structure of a writer process

 do {

 wait (wrt) ;

 // writing is performed

 signal (wrt) ;

 } while (TRUE);

6.8 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Readers-Writers Problem (Cont.)

 The structure of a reader process for “first” readers-writers problem

 do {

 wait (mutex) ;

 readcount ++ ;

 if (readcount == 1)

 wait (wrt) ;

 signal (mutex)

 // reading is performed

 wait (mutex) ;

 readcount - - ;

 if (readcount == 0)

 signal (wrt) ;

 signal (mutex) ;

 } while (TRUE);

6.9 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Dining-Philosophers Problem

 Five philosophers think and eat

 Takes 2 chopsticks to eat

 Shared data

 Bowl of rice (data set)

 Semaphore chopstick [5] initialized to 1

6.10 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Dining-Philosophers Problem (Cont.)

 The structure of Philosopher i:

do {

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 // think

} while (TRUE);

Is this a solution?

Problem(s)?

Solution to Problem(s) ?

6.11 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Problems with Semaphores

 Correct use of semaphore operations are imperative:

 Explain how each of the following can cause problems:

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Omitting wait (mutex) or signal (mutex) (or both)

