=

) : |zatl
“%7Classical Problems of Synchronization

B Quick Review
e mutex
e semaphore
» binary
» counting
® Bounded-Buffer Problem (Producer-consumer)
e Audio Player
m Readers and Writers Problem
e Banking system: read acct balances versus update balances
® Dining-Philosophers Problem
e Set of processes needing to lock multiple resources
» Disk and Tape (backup)
» Travel reservation: hotel, airline, car rental databases

Operating System Concepts — 9t Edition 6.1 Silberschatz, Galvin and Gagne ©2009

“$¥’ Classical Problems of Synchronization

[’e
€\

Using Semaphores

e Use is similar to our locks, but semantics are different

struct Semaphore { wait(S);
int value; balance = get_balance(account);
Queue q; balance = balance — amount;
}S;
withdraw (account, amount) { Threads -1 "Wait(S);
wait(S); block {w. wait(S);
balance = get_balance(account):™ critical
balance = balance — amount; >section put_balance(account, balance);
put_balance(account, balance); signal(S);
signal(S);
return balance; A ;I.gn al(S);
} e
It is undefined which —

thread runs after a signal signal(S);
v

http://www.cs.ucr.edu/~harsha/teaching/Winter2012/CS153/lectures/lec6.pdf

Operating System Concepts — 9th Edition 6.2 Silberschatz, Galvin and Gagne ©2009

‘w’“ 4
r Bounded-Buffer Problem
® N buffers, each can hold one item
m Semaphore mutex initialized to the value 1
m Semaphore full initialized to the value O
m Semaphore empty initialized to the value N.

, ~\\\;“
S+ :’&\ \

i “v 3
A X

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 9t" Edition 6.3

[
S\

~$7” Bounded Buffer Problem (Cont.)

m The structure of the producer process

do {

/[produce an item in nextp

wait (empty);
wait (mutex);

/[add the item to the buffer
signal (mutex);

signal (full);
} while (TRUE);

Operating System Concepts — 9t" Edition 6.4

Silberschatz, Galvin and Gagne ©2009

4

<

o
~$7” Bounded Buffer Problem (Cont.)

® The structure of the consumer process
do {
walit (full);
wait (mutex);

/I remove an item from buffer to nextc

signal (mutex);
signal (empty);

/I consume the item in nextc

} while (TRUE):

Operating System Concepts — 9th Edition 6.5 Silberschatz, Galvin and Gagne ©2009

=™

N

- .
r & Readers-Writers Problem

m A data set is shared among a number of concurrent processes
e Readers — only read the data set; they do not perform any updates
e Writers - can both read and write

® Problem — allow multiple readers to read at the same time. Only one single
writer can access the shared data at the same time

m Shared Data

e Data set

e Integer readcount initialized to O // number of readers

e Semaphore mutex initialized to 1 /[mutual exclusion to readcount
e Semaphore wrt initialized to 1 I/ exclusive reader or writer

y "(/
A ;‘:v 3

Operating System Concepts — 9t Edition 6.6 Silberschatz, Galvin and Gagne ©2009

: Y

4

" Readers-Writers Problem (Cont.)

® The structure of a writer process

do {
wait (wrt) ;

/[writing is performed

signal (wrt) ;
} while (TRUE);

Operating System Concepts — 9t" Edition 6.7

Silberschatz, Galvin and Gagne ©2009

=

—
"“%»"’ Readers-Writers Problem (Cont.)

® The structure of a reader process for “first” readers-writers problem

do {
wait (mutex) ;
readcount ++ ;
if (readcount == 1)
wait (wrt) ;
signal (mutex)

/Il reading is performed

wait (mutex) ;
readcount - -;
if (readcount == 0)
signal (wrt) ;
signal (mutex) ;
} while (TRUE);

Operating System Concepts — 9th Edition 6.8 Silberschatz, Galvin and Gagne ©2009

~$77 Dining-Philosophers Problem

m Five philosophers think and eat
m Takes 2 chopsticks to eat
m Shared data

e Bowl of rice (data set)

e Semaphore chopstick [5] initialized to 1 .
Operating System Concepts — 9t Edition 6.9 Silberschatz, Galvin and Gagne ©2009

“%"Dining-Philosophers Problem (Cont.)

B The structure of Philosopher i; _
P Is this a solution?

do {
wait (chopstick]i]); Problem(s)?
wait (chopStick[(i + 1) % 5]);

I/l eat
Solution to Problem(s) ?

signal (chopstickK]i]);
signal (chopstick[(i + 1) % 5]);
/I think

} while (TRUE):

“« A9%

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 9t" Edition 6.10

¥
#

“$¥” Problems with Semaphores

m Correct use of semaphore operations are imperative:

m Explain how each of the following can cause problems:
e signal (mutex) wait (mutex)

e wait (mutex) ... wait (mutex)

e Omitting wait (mutex) or signal (mutex) (or both)

\ \
AN
5 ‘& :
W<
U 2957

Operating System Concepts — 9th Edition 6.11 Silberschatz, Galvin and Gagne ©2009

