
6.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Synchronization Hardware

 Many systems provide hardware support for critical section code

 Uniprocessors – could disable interrupts

 Currently running code would execute without preemption

 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptable

1. Either test memory word and set value

2. Or swap contents of two memory words

6.2 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Solution to Critical-section Problem Using Locks

 do {

 acquire lock

 critical section

 release lock

 remainder section

 } while (TRUE);

6.3 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

TestAndndSet Instruction

 Definition:

 boolean TestAndSet (boolean *target)

 {

 boolean rv = *target;

 *target = TRUE;

 return rv:

 }

6.4 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Solution using TestAndSet

 Shared boolean variable lock., initialized to false.

 Solution:

 do {

 while (TestAndSet (&lock))

 ; // do nothing

 // critical section

 lock = FALSE;

 // remainder section

 } while (TRUE);

6.5 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Bounded-waiting Mutual Exclusion with TestandSet()

 do {

 waiting[i] = TRUE;

 key = TRUE;

 while (waiting[i] && key)

 key = TestAndSet(&lock);

 waiting[i] = FALSE;

 // critical section

 j = (i + 1) % n;

 while ((j != i) && !waiting[j])

 j = (j + 1) % n;

 if (j == i)

 lock = FALSE;

 else

 waiting[j] = FALSE;

 // remainder section

 } while (TRUE);

6.6 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Software Solutions

 Mutex Lock

 short for mutual exclusion

 software tool to solve critical section problem

 acquire () acquires the lock

 release () releases the lock

acquire ()

{

 while (!available); /* busy wait */

 available = false;

}

release () {available = true;}

do{ // solution to critical section

 acquire ();

 enter critical section

 release ();

 remainder section

} while (true);

6.7 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Mutex Lock

 Mutex Lock

 acquire/release are atomic

 often implemented using one of the hardware mechanisms

 requires busy waiting

 spinlock

– any other process trying to enter critical section must wait (“spins”)

– disadvantage: wastes CPU cycles

– advantage: no context switch

6.8 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Semaphore

 Synchronization tool that does not require busy waiting

 Semaphore S – integer variable

 Two standard operations modify S: wait() and signal()

 Originally called P() and V()

 Less complicated

 Can only be accessed via two indivisible (atomic) operations

 wait (S) { // originally P Dutch proberen “to test”

 while S <= 0

 ; // no-op

 S--;

 }

 signal (S) { // originally V Dutch verhogen “to increment”

 S++;

 }

6.9 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Semaphore as General Synchronization Tool

 Counting semaphore – integer value can range over an unrestricted domain

 Binary semaphore – integer value can range only between 0 and 1;

 Also known as mutex locks

 Can implement a counting semaphore S as a binary semaphore

 Provides mutual exclusion

Semaphore mutex; // initialized to 1

do {

 wait (mutex);

 // Critical Section

 signal (mutex);

 // remainder section

} while (TRUE);

6.10 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Semaphore Implementation with no Busy waiting

 With each semaphore there is an associated waiting queue.

Each entry in a waiting queue has two data items:

 value (of type integer)

 pointer to next record in the list

semaphore data structure in C

typedef struct semaphore

{

 int value;

 struct process *list;

};

6.11 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Semaphore Implementation with no Busy waiting (Cont.)

 Implementation of wait:

 wait(semaphore *S) {

 S->value--;

 if (S->value < 0) {

 add this process to S->list;

 block();

 }

 }

 Implementation of signal:

 signal(semaphore *S) {

 S->value++;

 if (S->value <= 0) {

 remove a process P from S->list;

 wakeup(P);

 }

 }

6.12 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

 P0 P1

 wait (S); wait (Q);

 wait (Q); wait (S);

 . .

 . .

 . .

 signal (S); signal (Q);

 signal (Q); signal (S);

 Starvation – indefinite blocking. A process may never be removed from the
semaphore queue in which it is suspended

 Priority Inversion - Scheduling problem when lower-priority process holds a
lock needed by higher-priority process

