
6.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Synchronization Hardware

 Many systems provide hardware support for critical section code

 Uniprocessors – could disable interrupts

 Currently running code would execute without preemption

 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware instructions

 Atomic = non-interruptable

1. Either test memory word and set value

2. Or swap contents of two memory words

6.2 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Solution to Critical-section Problem Using Locks

 do {

 acquire lock

 critical section

 release lock

 remainder section

 } while (TRUE);

6.3 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

TestAndndSet Instruction

 Definition:

 boolean TestAndSet (boolean *target)

 {

 boolean rv = *target;

 *target = TRUE;

 return rv:

 }

6.4 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Solution using TestAndSet

 Shared boolean variable lock., initialized to false.

 Solution:

 do {

 while (TestAndSet (&lock))

 ; // do nothing

 // critical section

 lock = FALSE;

 // remainder section

 } while (TRUE);

6.5 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Bounded-waiting Mutual Exclusion with TestandSet()

 do {

 waiting[i] = TRUE;

 key = TRUE;

 while (waiting[i] && key)

 key = TestAndSet(&lock);

 waiting[i] = FALSE;

 // critical section

 j = (i + 1) % n;

 while ((j != i) && !waiting[j])

 j = (j + 1) % n;

 if (j == i)

 lock = FALSE;

 else

 waiting[j] = FALSE;

 // remainder section

 } while (TRUE);

6.6 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Software Solutions

 Mutex Lock

 short for mutual exclusion

 software tool to solve critical section problem

 acquire () acquires the lock

 release () releases the lock

acquire ()

{

 while (!available); /* busy wait */

 available = false;

}

release () {available = true;}

do{ // solution to critical section

 acquire ();

 enter critical section

 release ();

 remainder section

} while (true);

6.7 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Mutex Lock

 Mutex Lock

 acquire/release are atomic

 often implemented using one of the hardware mechanisms

 requires busy waiting

 spinlock

– any other process trying to enter critical section must wait (“spins”)

– disadvantage: wastes CPU cycles

– advantage: no context switch

6.8 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Semaphore

 Synchronization tool that does not require busy waiting

 Semaphore S – integer variable

 Two standard operations modify S: wait() and signal()

 Originally called P() and V()

 Less complicated

 Can only be accessed via two indivisible (atomic) operations

 wait (S) { // originally P Dutch proberen “to test”

 while S <= 0

 ; // no-op

 S--;

 }

 signal (S) { // originally V Dutch verhogen “to increment”

 S++;

 }

6.9 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Semaphore as General Synchronization Tool

 Counting semaphore – integer value can range over an unrestricted domain

 Binary semaphore – integer value can range only between 0 and 1;

 Also known as mutex locks

 Can implement a counting semaphore S as a binary semaphore

 Provides mutual exclusion

Semaphore mutex; // initialized to 1

do {

 wait (mutex);

 // Critical Section

 signal (mutex);

 // remainder section

} while (TRUE);

6.10 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Semaphore Implementation with no Busy waiting

 With each semaphore there is an associated waiting queue.

Each entry in a waiting queue has two data items:

 value (of type integer)

 pointer to next record in the list

semaphore data structure in C

typedef struct semaphore

{

 int value;

 struct process *list;

};

6.11 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Semaphore Implementation with no Busy waiting (Cont.)

 Implementation of wait:

 wait(semaphore *S) {

 S->value--;

 if (S->value < 0) {

 add this process to S->list;

 block();

 }

 }

 Implementation of signal:

 signal(semaphore *S) {

 S->value++;

 if (S->value <= 0) {

 remove a process P from S->list;

 wakeup(P);

 }

 }

6.12 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

 P0 P1

 wait (S); wait (Q);

 wait (Q); wait (S);

 . .

 . .

 . .

 signal (S); signal (Q);

 signal (Q); signal (S);

 Starvation – indefinite blocking. A process may never be removed from the
semaphore queue in which it is suspended

 Priority Inversion - Scheduling problem when lower-priority process holds a
lock needed by higher-priority process

