=

N
m_m.&

w o Synchronization Hardware

® Many systems provide hardware support for critical section code
® Uniprocessors — could disable interrupts
e Currently running code would execute without preemption
e Generally too inefficient on multiprocessor systems
» Operating systems using this not broadly scalable
® Modern machines provide special atomic hardware instructions
» Atomic = non-interruptable
Either test memory word and set value
Or swap contents of two memory words

Operating System Concepts — 9t Edition 6.1 Silberschatz, Galvin and Gagne ©2009

&é‘/\'éolution to Critical-section Problem Using Locks

LA\

do {

[acquirellogk

critical section

| release logk
remainder section
} while (TRUE);

A X
Operating System Concepts — 9th Edition 6.2 Silberschatz, Galvin and Gagne ©2009

"“N 1
“$77 TestAndndSet Instruction
m Definition:

boolean TestAndSet (boolean *target)

{

boolean rv = *target;
*target = TRUE;
return rv:

Operating System Concepts — 9th Edition 6.3 Silberschatz, Galvin and Gagne ©2009

=

af | |
“$77 Solution using TestAndSet

m Shared boolean variable lock., initialized to false.
m Solution:

do {
while (TestAndSet (&lock))
; /I do nothing
/I critical section
lock = FALSE;

/l remainder section

} while (TRUE);

"v«

Operating System Concepts — 9th Edition 6.4 Silberschatz, Galvin and Gagne ©2009

do{
waiting[i] = TRUE;
key = TRUE;
while (waiting[i] && key)
key = TestAndSet(&lock);
waiting[i] = FALSE;
/[critical section

j=(0+1)%n;
while ((j != 1) && 'waiting][j])
j=(0+1)%n;
if j==1)
lock = FALSE;
else

waiting[j] = FALSE;
/I remainder section
} while (TRUE);

Operating System Concepts — 9th Edition 6.5 Silberschatz, Galvin and Gagne ©2009

ot Software Solutions

-

®m Mutex Lock
e short for mutual exclusion
e software tool to solve critical section problem
e acquire () acquires the lock
e release () releases the lock

acquire ()

{
while (l'available); /* busy wait */
availilable = false;

release () {available = true;}

do{ // solution to critical section
acquire ();
enter critical section
release ()
remainder section
} while (true);

Operating System Concepts — 9t" Edition 6.6

A
\\\\‘

& oge T
e
e
W Wy 2
AL PUNITY

Silberschatz, Galvin and Gagne ©2009

n,w Mutex Lock

®m Mutex Lock

e acquire/release are atomic

e often implemented using one of the hardware mechanisms

e requires busy waiting

» spinlock

any other process trying to enter critical section must wait (“spins”)
disadvantage: wastes CPU cycles
advantage: no context switch

Operating System Concepts — 9th Edition 6.7 Silberschatz, Galvin and Gagne ©2009

& Semaphore

® Synchronization tool that does not require busy waiting
®m Semaphore S — integer variable
m Two standard operations modify S: wait() and signal()

e Oiriginally called P() and V()
m Less complicated
Can only be accessed via two indivisible (atomic) operations

e wait (S) { // originally P Dutch proberen “to test”
while S<=0
; [l no-op
S--;
}

e signal (S) {// originally V Dutch verhogen “to increment”
S++;

. \ :\ A\
X 5
-
i “‘ ’
A N

Operating System Concepts — 9th Edition 6.8 Silberschatz, Galvin and Gagne ©2009

y

“$»’Semaphore as General Synchronization Tool

m Counting semaphore — integer value can range over an unrestricted domain
m Binary semaphore — integer value can range only between 0 and 1;
e Also known as mutex locks
m Can implement a counting semaphore S as a binary semaphore
Provides mutual exclusion
Semaphore mutex; // initialized to 1
do {
wait (mutex);
/I Critical Section
signal (mutex);
// remainder section
} while (TRUE);

\“n“
5 ‘& :

W<
A A

Operating System Concepts — 9th Edition 6.9 Silberschatz, Galvin and Gagne ©2009

=

-

‘f~‘f’§f(8emaphore Implementation with no Busy waiting

m With each semaphore there is an associated waiting queue.
Each entry in a waiting queue has two data items:

e value (of type integer)
e pointer to next record in the list

semaphore data structure in C

typedef struct semaphore
{

int value;
struct process *list;

};

3 AN § \"
> 2 ALl
— a\
s <
7 WS
“ AR

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 9t" Edition 6.10

&@;;Ssemaphore Implementation with no Busy waiting (Cont.)

B Implementation of wait:
wait(semaphore *S) {
S->value--;
if (S->value <0) {
add this process to S->list;
block();

}

B [Implementation of signal:

signal(semaphore *S) {
S->value++;
if (S->value <=0) {
remove a process P from S->list;
wakeup(P);

Operating System Concepts — 9t Edition 6.11 Silberschatz, Galvin and Gagne ©2009

=

N
m_m.&

w & Deadlock and Starvation

B Deadlock —two or more processes are waiting indefinitely for an event that
can be caused by only one of the waiting processes

m Let S and Q be two semaphores initialized to 1

P, P,
wait (S); wait (Q);
wait (Q); wait (S);
signal (S); signal (Q);
signal (Q); signal (S);

m Starvation — indefinite blocking. A process may never be removed from the
semaphore queue in which it is suspended

m Priority Inversion - Scheduling problem when lower-priority process holds a
lock needed by higher-priority process

Operating System Concepts — 9t Edition 6.12 Silberschatz, Galvin and Gagne ©2009

