
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition,

Chapter 5: Process

Synchronization

6.2 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Module 5: Process Synchronization

 Background

 The Critical-Section Problem

 Peterson’s Solution

 Synchronization Hardware

 Semaphores

 Classic Problems of Synchronization

 Monitors

 Synchronization Examples

 Atomic Transactions

6.3 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Objectives

 To introduce the critical-section problem, whose solutions can be used to

ensure the consistency of shared data

 To present both software and hardware solutions of the critical-section

problem

 To introduce the concept of an atomic transaction and describe

mechanisms to ensure atomicity

6.4 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Background

 Concurrent access to shared data may result in data

inconsistency

1. What does this mean?

2. Give an example

 Maintaining data consistency requires mechanisms to

ensure the orderly execution of cooperating processes

1. Explain the producer-consumer problem again

2. Where can problems arise?

6.5 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Producer

while (true) {

 /* produce an item and put in nextProduced */

 while (count == BUFFER_SIZE)

 ; // do nothing

 buffer [in] = nextProduced;

 in = (in + 1) % BUFFER_SIZE;

 count++;

}

6.6 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Consumer

 while (true) {

 while (count == 0)

 ; // do nothing

 nextConsumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 count--;

 /* consume the item in nextConsumed

 }

6.7 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Race Condition

 count++ could be implemented as

 register1 = count
 register1 = register1 + 1
 count = register1

 count-- could be implemented as

 register2 = count
 register2 = register2 - 1
 count = register2

 Consider this execution interleaving with “count = 5” initially:

 S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count = 6 }
S5: consumer execute count = register2 {count = 4}

6.8 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Critical-Section Problem

1. Consider n processes [P0, P1, … Pn]

2. Each process has a critical section

(e.g. changing common variable, updating common table)

3. Only 1 of the n processes can be executing in its critical section

(i.e. no 2 processes can execute in their critical sections at the same time)

4. General Structure

do

{

 entry section – request to enter critical section

 execute critical section

 exit section – leaving critical section

 execute remainder section

} while (true);

6.9 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Solution to Critical-Section Problem

Must satisfy the following 3 requirements:

1. Mutual Exclusion - If process Pi is executing in its critical section, then no

other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there exist

some processes that wish to enter their critical section, then the selection

of the processes that will enter the critical section next cannot be

postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that other

processes are allowed to enter their critical sections after a process has

made a request to enter its critical section and before that request is

granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the N processes

6.10 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

Peterson’s Solution

 Two process solution

 Assume that the LOAD and STORE instructions are atomic; that is,
cannot be interrupted.

 The two processes share two variables:

 int turn;

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical
section.

 The flag array is used to indicate if a process is ready to enter the
critical section. flag[i] = true implies that process Pi is ready!

6.11 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8th Edition

 do {

 flag[i] = TRUE;

 turn = j;

 while (flag[j] && turn == j);

 critical section

 flag[i] = FALSE;

 remainder section

 } while (TRUE);

Algorithm for Process Pi

