
3.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Interprocess Communication – Message Passing

 Second model of IPC (remember 1st was shared memory)

 Message system – processes communicate with each other without
resorting to shared variables

 IPC facility provides two operations:

 send(message) – message size fixed or variable

 receive(message)

3.2 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Implementation Questions

 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be between every pair of communicating

processes?

 What is the capacity of a link?

 Is the size of a message that the link can accommodate fixed or variable?

 Is a link unidirectional or bi-directional?

3.3 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Shared Memory Example

Producer
const int SHARED_MEM_SIZE = 4096;

const char *pSharedName = "CS460";

int main ()

{

 int segmentID;

 void *pSharedMemory;

 // Allocate shared memory segment

 segmentID = shm_open (pSharedName, O_CREAT | O_RDWR, 0666);

 // Specify the size

 ftruncate (segmentID, SHARED_MEM_SIZE);

 // Memory map the shared memory object

 pSharedMemory = mmap (0, SHARED_MEM_SIZE, PROT_WRITE, MAP_SHARED,

 segmentID, 0);

 // Write message to the shared memory segment

 sprintf (pSharedMemory, "Love This Stuff!!!");

 return 0;

}

3.4 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Shared Memory Example

Consumer
const int SHARED_MEM_SIZE = 4096;

const char *pSharedName = "CS460";

int main ()

{

 int segmentID;

 void *pSharedMemory;

 // Allocate shared memory segment

 segmentID = shm_open (pSharedName, O_RDONLY, 0666);

 // Memory map the shared memory segment

 pSharedMemory = mmap (0, SHARED_MEM_SIZE, PROT_READ, MAP_SHARED,

 segmentID, 0);

 // Read message from the shared memory segment

 printf ("%s", (char *) pSharedMemory);

 // Remove the shared memory segment

 shm_unlink (pSharedName);

 return 0;

}

3.5 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Communications in Client-Server Systems
 Skipping Section 3.6.1 & 3.6.2

 Sockets

 Remote Procedure Calls

 Remote Method Invocation (Java)

3.6 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Pipes

 Pipe - conduit allowing two processes to communicate

 Pipe issues to consider:

 unidirectional vs bidirectional communication

 if bidirectional, half duplex vs full duplex

 parent-child relationship a must or not

 communicate over network or not

3.7 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Ordinary Pipe

 Ordinary Pipe - communicates in standard producer-consumer fashion

 write-end fd[1] file descriptor 1 is write

 read-end fd[0] file descriptor 0 is read

int fd[2]; // pp. 143-144

pid_t pid = fork (); // fork a child

if (-1 == pipe (fd))

{

 exit (1);

}

if (pid > 0) // parent write

{

 close (fd[0]); // close read end

 write (fd[1], write_msg, lengthOfMessage);

 …

}

else // child read

{

 close (fd[1]); // close write end

 read (fd[0], read_msg, BUFFER_SIZE);

3.8 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Main IPC Methods

http://en.wikipedia.org/wiki/Inter-process_communication

