
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition, 

Chapter 3:  Processes 



3.2 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition 

Process Creation 
/* What’s the output???? */ 

int main()  

{ 
 pid_t  pid; 
 int i; 

 /* fork another process */ 
 pid = fork(); 
 fprintf(stderr,”The value: %d”, value); 
 if (pid < 0) { /* error occurred */ 
   fprintf(stderr, "Fork Failed"); 
   exit (1); 
 } 
 else if (pid == 0) { /* child process */ 
   for (i = 1; i <= 2; ++i) {printf (“%d”, -i);} 
 } 
 else { /* parent process */ 

  for (i = 1; i <= 2; ++i) {printf (“%d”, i);} 
   wait (NULL); /* parent will wait for the child to complete */ 

   printf ("Child Complete"); 
   exit (0); 
 } 

 printf ("Child Complete"); 

 
} 



3.3 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition 

Process Creation 



3.4 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition 

Process Termination 

 Process executes last statement and asks the operating system to 

delete it (exit) 

 Output data from child to parent (via wait) 

 Process’ resources are deallocated by operating system 

 Parent may terminate execution of children processes (abort) 

 

 Cascading termination 

 kill -9 pid 



3.5 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition 

Interprocess Communication (IPC) 

 Why do we want this? 

 

 Two models of IPC 

 Shared memory - establish shared memory and treat all 

accesses as routine memory accesses 



3.6 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition 

Cooperating Processes 

 Independent process cannot affect or be affected by the execution of 

another process 

 Cooperating process can affect or be affected by the execution of another 

process 

 Advantages of process cooperation 

 Information sharing  

 Computation speed-up 

 Modularity 

 Convenience 



3.7 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition 

Producer-Consumer Problem 

 Paradigm for cooperating processes, producer process 

produces information that is consumed by a consumer 

process 

 unbounded-buffer places no practical limit on the size of 

the buffer 

 bounded-buffer assumes that there is a fixed buffer size 



3.8 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition 

Bounded-Buffer – Shared-Memory Solution 

 Shared data 

#define BUFFER_SIZE 10 

typedef struct item { 

 . . . 

} item; 

 

item buffer[BUFFER_SIZE]; 

int in = 0; 

int out = 0; 

 Solution is correct, but can only use BUFFER_SIZE-1 elements 

 



3.9 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition 

Bounded-Buffer – Producer 

 

 while (true)  

 { 

   /* Produce an item */ 

        while (((in + 1) % BUFFER_SIZE)  == out) 

      {   /* do nothing -- no free buffers */} 

     buffer[in] = item; 

     in = (in + 1) % BUFFER_SIZE; 

     } 

 

 

  

 



3.10 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition 

Bounded Buffer – Consumer 

 while (true) { 

          while (in == out) 

    { /* do nothing -- nothing to consume */} 

 

      // remove an item from the buffer 

      item = buffer[out]; 

      out = (out + 1) % BUFFER SIZE; 

      return item; 

     } 


