Chapter 3. Processes
-] -]

Operating System Concepts — 9t" Edition, Silberschatz, Galvin and Gagne ©2009

4
Y,

&4,47‘7’"'”}' .
2 Process Creation

/* What’s the output???? */

int main ()

{

pid t pid;

int i;

/* fork another process */

pid = fork() ;

fprintf (stderr,”The value: %d”, wvalue);

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
exit (1);

}

else if (pid == 0) { /* child process */
for (1 =1; i <= 2; ++i) {printf (“%d4d”, -i);}

}

else { /* parent process */
for (1 =1; 1 <= 2; ++i) {printf (“%d4d”, 1i);}
wait (NULL); /* parent will wait for the child to complete */
printf ("Child Complete") ;
exit (0);

}

printf ("Child Complete") ; X
Operating System Concepts — 9th Edition 3.2 Silberschatz, Galvin and Gagne ©2009

Process Creation

parent et resumes

child exec() »

Operating System Concepts — 9th Edition 3.3 Silberschatz, Galvin and Gagne ©2009

r & Process Termination

® Process executes last statement and asks the operating system to
delete it (exit)

e Output data from child to parent (via wait)
e Process’ resources are deallocated by operating system
m Parent may terminate execution of children processes (abort)

m Cascading termination
e kill -9 pid

SN\
- <
WS

“l A9k

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 9t" Edition 3.4

‘T mJ

27 Interprocess Communication (IPC)

® Why do we want this?

B Two models of IPC

e Shared memory - establish shared memory and treat all

accesses as routine memory acCcesSses

process A

shared

t It

process B

kernel

Operating System Concepts — 9t" Edition 35

Silberschatz, Galvin and Gagne ©2009

o Cooperating Processes

® Independent process cannot affect or be affected by the execution of
another process

m Cooperating process can affect or be affected by the execution of another
process

m Advantages of process cooperation
e Information sharing
e Computation speed-up
e Modularity
e Convenience

. A\ \'\
~ 2 3\
" — 2l
y <
7 WS
“l X

3.6 Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 9t" Edition

4
#

A"»"(T’F'bj‘
“$¥” Producer-Consumer Problem

m Paradigm for cooperating processes, producer process
produces information that is consumed by a consumer

process

e unbounded-buffer places no practical limit on the size of
the buffer

e bounded-buffer assumes that there is a fixed buffer size

. \ :\ A\
X 5
-
i “‘ ’
A N

Operating System Concepts — 9th Edition 3.7 Silberschatz, Galvin and Gagne ©2009

“*“"’ Bounded-Buffer — Shared-Memory Solution

m Shared data
#define BUFFER SIZE 10

typedef struct item {

} item;

item buffer [BUFFER_SIZE] ;
int in = 0;
int out = 0;

®m Solution is correct, but can only use BUFFER_SIZE-1 elements

. \ :\ A\
S e 5
-
i “‘ ’
A X

Operating System Concepts — 9th Edition 3.8 Silberschatz, Galvin and Gagne ©2009

‘\-“”‘?,h’ Bounded-Buffer — Producer

while (true)

{

/* Produce an item */
while (((in + 1) % BUFFER SIZE) == out)
{ /* do nothing -- no free buffers */}

buffer[in] = item;
in = (in + 1) % BUFFER SIZE;

Operating System Concepts — 9th Edition 3.9 Silberschatz, Galvin and Gagne ©2009

=

“$¥” Bounded Buffer — Consumer

while (true) {

while (in == out)
{ /* do nothing -- nothing to consume */}

// remove an item from the buffer
item = buffer[out];
out = (out + 1) % BUFFER SIZE;

return item;

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 9t" Edition 3.10

