
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition,

Chapter 3: Processes

3.2 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Process Creation
/* What’s the output???? */

int main()

{
 pid_t pid;
 int i;

 /* fork another process */
 pid = fork();
 fprintf(stderr,”The value: %d”, value);
 if (pid < 0) { /* error occurred */
 fprintf(stderr, "Fork Failed");
 exit (1);
 }
 else if (pid == 0) { /* child process */
 for (i = 1; i <= 2; ++i) {printf (“%d”, -i);}
 }
 else { /* parent process */

 for (i = 1; i <= 2; ++i) {printf (“%d”, i);}
 wait (NULL); /* parent will wait for the child to complete */

 printf ("Child Complete");
 exit (0);
 }

 printf ("Child Complete");

}

3.3 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Process Creation

3.4 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Process Termination

 Process executes last statement and asks the operating system to

delete it (exit)

 Output data from child to parent (via wait)

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)

 Cascading termination

 kill -9 pid

3.5 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Interprocess Communication (IPC)

 Why do we want this?

 Two models of IPC

 Shared memory - establish shared memory and treat all

accesses as routine memory accesses

3.6 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Cooperating Processes

 Independent process cannot affect or be affected by the execution of

another process

 Cooperating process can affect or be affected by the execution of another

process

 Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

3.7 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process

produces information that is consumed by a consumer

process

 unbounded-buffer places no practical limit on the size of

the buffer

 bounded-buffer assumes that there is a fixed buffer size

3.8 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Bounded-Buffer – Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

typedef struct item {

 . . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 elements

3.9 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Bounded-Buffer – Producer

 while (true)

 {

 /* Produce an item */

 while (((in + 1) % BUFFER_SIZE) == out)

 { /* do nothing -- no free buffers */}

 buffer[in] = item;

 in = (in + 1) % BUFFER_SIZE;

 }

3.10 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Bounded Buffer – Consumer

 while (true) {

 while (in == out)

 { /* do nothing -- nothing to consume */}

 // remove an item from the buffer

 item = buffer[out];

 out = (out + 1) % BUFFER SIZE;

 return item;

 }

