Chapter 3. Processes
-] -]

Operating System Concepts — 9t" Edition, Silberschatz, Galvin and Gagne ©2009

&r«%—{ Chapter 3: Processes

Process Concept

Process Scheduling
Operations on Processes
Interprocess Communication
Examples of IPC Systems

Communication in Client-Server Systems

Operating System Concepts — 9th Edition 3.2 Silberschatz, Galvin and Gagne ©2009

=™

N

<o)
‘*w' Process Concept

® An operating system executes a variety of programs:
e Batch system — jobs
e Time-shared systems — user programs or tasks
B Textbook uses the terms job and process almost interchangeably

® Process — a program in execution; process execution must
progress in sequential fashion

® A process includes (among other things): process in Memory

e program counter max

stack
e stack
e data section (globals) l
e text (program)
e heap 1

heap

data

text

y "(/
A ;‘:v 3

Operating System Concepts — 9t Edition 3.3 Silberschatz, Galvin and Gagne ©2009

=

<5
g Process State

= s

m As a process executes, it changes state

1. How many processes can be in each state?

admitted

interrupt exit terminated

scheduler dispatch

I/O or event completion I/O or event wait

2 \)

Operating System Concepts — 9th Edition 3.4 Silberschatz, Galvin and Gagne ©2009

=

N
m_m.&

“»”7 Process Control Block (PCB)

process state
Information associated with each process process number

® Process state program counter

Program counter
CPU registers registers
CPU scheduling information

. . memory limits
Memory-management information 1

Accounting information list of open files

I/O status information e o o

1. Who owns this data structure?

Operating System Concepts — 9t Edition 35 Silberschatz, Galvin and Gagne ©2009

4
#

r & Process Scheduling

m Processes fall into one of two types
® |/O Bound (e.g.
m CPU Bound (e.g.

®m New processes go into the ready queue

m After a process is allocated the CPU
> It executes for a while and eventually quits
> IS interrupted
» waits for the completion of an 1/O request

Operating System Concepts — 9t" Edition 3.6

NAAY :\ \\
X 5
-
i “‘ ’
A N

Silberschatz, Galvin and Gagne ©2009

=
,ﬂ,.m.&

(.

2 Schedulers

® Long-term scheduler (or job scheduler)

e selects which processes should be brought into the ready

queue

» 1.e loads the process into memory for execution

e must select a good mix of I/O bound and CPU bound

processes

m Short-term scheduler (or CPU scheduler) — selects which

process should be executed next and allocates CPU

—D

ready queue

A 4

» CPU I

J 3

I/0 queue < I/0O request
time slice
expired
ﬁm, fork a
W‘ child
interrupt wait for an
occurs interrupt

F 3

Operating System Concepts — 9t" Edition 3.7

& - =35 ‘)
> vﬂ‘ﬁ;‘ ‘\\/
TN
4 <

2 ‘: 3

Silberschatz, Galvin and Gagne ©2009

: ‘__f’f
ot Ready Queue And Various I/O Device Queues

e\,

queue header PCB, PCB,
ready head >
queue tail registers registers
L] L]
[] []
L] L]
mag head +—=
tape , =
unit 0 tail =
tmag head +——=
ape
lape S PCB, PCB,, PCB,
/ B
disk head 1
nit o Ll ~\
PCB.
terminal head > —=
unit 0 tail 11—
L
L]
Operating System Concepts — 9t Edition 3.8 Silberschatz, Galvin and Gagne ©2009

57 Context Switch

1. What is the context of a process?

2. What is a context switch?

3. Does useful work happen for the user during a context switch? Explain.

process P, operating system process P,

interrupt or system call
executing Jl

h | save state into PCB, |

idle

|reload state from PCB, |

ridle interrupt or system call executing

v

| save state into PCB; |

idle

|reload state from PCBU|

executing U‘¥

Operating System Concepts — 9th Edition 3.9 Silberschatz, Galvin and Gagne ©2009

o
7,

&n?;-{ Process Creation

B During program execution, a process may create several new processes
e Process tree
e ProcessId

e Parent Process

login
pid = 8415

bash
pid = 8416

e Child Process

1. Explain the login process

pdflush sshd
pid = 200 pid = 3610

tesch
pid = 4005

2. How are there 2 processes
created by bash

ps emacs
pid = 9298 pid = 9204

Operating System Concepts — 9t Edition 3.10 Silberschatz, Galvin and Gagne ©2009

4
Y,

> & Process Creation

m Address space
e Child duplicate of parent
e Child has a program loaded into it
m UNIX examples
e fork system call creates new process

e exec system call used after a fork to replace the process’ memory
space with a new program

Operating System Concepts — 9t Edition 3.11 Silberschatz, Galvin and Gagne ©2009

¥
Y,

O |
-5 Process Creation

int main ()

{
pid t pid;
int value = 0;
value = 9;
/* fork another process */
pid = fork() ;
fprintf (stderr,”The value: %d”, wvalue);
if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
exit (1);
}
else if (pid == 0) { /* child process */
execlp ("/bin/1s", "l1ls", NULL);
}
else { /* parent process */
wait (NULL); /* parent will wait for the child to complete */
printf ("Child Complete") ;
exit (0);
} L E‘@i\
} /* page 118 of Silberschatz */ "f?}iﬁ,

Operating System Concepts — 9t Edition 3.12 Silberschatz, Galvin and Gagne ©2009

