
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition,

Chapter 2: Operating-System

Structures

2.2 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Chapter 2: Operating-System Structures

 Operating System Services

 User Operating System Interface

 System Calls

 Types of System Calls

 System Programs

 Operating System Design and Implementation

 Operating System Structure

 Virtual Machines

 Operating System Debugging

 Operating System Generation

 System Boot

2.3 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Objectives

 To describe the services an operating system provides to users, processes,

and other systems

 To discuss the various ways of structuring an operating system

 To explain how operating systems are installed and customized and how

they boot

2.4 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Operating System Services

 An OS provides an environment for the execution of programs.

 OS services helpful to user:

 User interface - Graphical UI or command line

 Program execution - The system must be able to load a program into

memory and to run that program, end execution, either normally or

abnormally (indicating error)

 I/O operations - A running program may require I/O, which may involve

a file or an I/O device

 File-system manipulation - Programs need to read and write files and

directories, create and delete them, search them, list file Information,

permission management.

 Communications – Processes may exchange information, on the same

computer or between computers over a network

 Error detection – OS needs to be constantly aware of possible errors

2.5 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Operating System Services (Cont)

 OS services for efficient operation:

 Resource allocation - e.g. CPU cycles, main memory, and file storage

 Accounting - To keep track of which users use how much and what kinds
of computer resources

 Protection and security

2.6 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

A View of Operating System Services

2.7 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

User Operating System Interface - CLI

 Command Line Interface (CLI) or command interpreter allows

direct command entry

 Sometimes implemented in kernel, sometimes by systems

program

 Sometimes multiple flavors implemented – shells (.bashrc

on zeus)

 Primarily fetches a command from user and executes it

 Many systems now include both CLI and GUI interfaces

 Microsoft Windows is GUI with CLI “command” shell

 Apple Mac OS X as “Aqua” GUI interface with UNIX kernel

underneath and shells available

 Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

1. How do we get to the command interpreter? Windows? Linux?

2. How do we modify the command interpreter environment for our

own specific needs? Linux?

3. Putty to zeus … create an alias … add . to PATH

2.8 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level Application Program Interface

(API) rather than direct system call use

 Three most common APIs are:

 Win32 API for Windows

 POSIX (Portable Operating System Interface) API for POSIX-based

systems (including virtually all versions of UNIX, Linux, and Mac OS X)

 Java API for the Java virtual machine (JVM)

1. Why use APIs rather than system calls?

 (Note that the system-call names used throughout this text are generic)

2.9 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Example of System Calls

 System call sequence to copy the contents of one file to another file

1. Where do the system calls come from?

2. Is any API used? If so, what? If not, why not?

2.10 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Example of Standard API

 Consider the ReadFile() function in the

 Win32 API—a function for reading from a file

 A description of the parameters passed to ReadFile()

 HANDLE file—the file to be read

 LPVOID buffer—a buffer where the data will be read into and written from

 DWORD bytesToRead—the number of bytes to be read into the buffer

 LPDWORD bytesRead—the number of bytes read during the last read

 LPOVERLAPPED ovl—indicates if overlapped I/O is being used

2.11 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

API – System Call – OS Relationship

POSIX
libc.so & libgcc.so

2.12 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Standard C Library Example

 C program invoking printf() library call, which calls write() system call

2.13 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Parameter Passing via Table

Three parameter passing methods to pass data to a system call:
- Registers -Block of Memory -Stack

1. What are advantages and disadvantages of each?

2.14 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Examples of Windows and Unix System Calls

1. What’s a pipe? How would you use a pipe?

2. Has anyone used chmod or chown? How?

T
y
p
e
s
 o

f
s
y
s
te

m
 c

a
ll
s

2.15 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Single-tasking OS

 MS-DOS OS is single-tasking

1. Command interpreter invoked when computer is started

2. To run a program:

a. Load program into memory writing over portion of OS for more

space

b. Program is run until completed or error causes trap

c. Portion of command interpreter left is executed and reloads OS that

was kicked out

2.16 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

MS-DOS execution

(a) At system startup (b) running a program

2.17 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

Multitasking OS

 FreeBSD OS is multitasking

1. User logs on and shell is run

2. Program is loaded and executed BUT command interpreter can

continue running simultaneously

3. To run a program

a. fork () a new process

b. Load program into MEM via exec ()

c. Program can be run in foreground or background

d. exit () terminate process

1. What is the meaning of foreground or background?

2. How to run a program in the background?

2.18 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

FreeBSD Running Multiple Programs

2.19 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 9th Edition

System Programs

 System programs:

 are not necessarily part of the OS

 provide a convenient environment for program development

and execution. They can be divided into:

 File management (e.g.

 Status information (e.g.

 File modification (e.g.

 Programming language support (e.g.

 Program loading and execution (e.g.

 Communications (e.g.

 Background services (e.g.

 Most users’ view of the operation system is defined by system

programs, not the actual system calls

